@@ -7603,12 +7603,70 @@ def _tz_localize(ax, tz, ambiguous):
7603
7603
# Numeric Methods
7604
7604
def abs (self ):
7605
7605
"""
7606
- Return an object with absolute value taken--only applicable to objects
7607
- that are all numeric.
7606
+ Return a Series/DataFrame with absolute numeric value of each element.
7607
+
7608
+ This function only applies to elements that are all numeric.
7608
7609
7609
7610
Returns
7610
7611
-------
7611
- abs: type of caller
7612
+ abs
7613
+ Series/DataFrame containing the absolute value of each element.
7614
+
7615
+ Notes
7616
+ -----
7617
+ For ``complex`` inputs, ``1.2 + 1j``, the absolute value is
7618
+ :math:`\\ sqrt{ a^2 + b^2 }`.
7619
+
7620
+ Examples
7621
+ --------
7622
+ Absolute numeric values in a Series.
7623
+
7624
+ >>> s = pd.Series([-1.10, 2, -3.33, 4])
7625
+ >>> s.abs()
7626
+ 0 1.10
7627
+ 1 2.00
7628
+ 2 3.33
7629
+ 3 4.00
7630
+ dtype: float64
7631
+
7632
+ Absolute numeric values in a Series with complex numbers.
7633
+
7634
+ >>> s = pd.Series([1.2 + 1j])
7635
+ >>> s.abs()
7636
+ 0 1.56205
7637
+ dtype: float64
7638
+
7639
+ Absolute numeric values in a Series with a Timedelta element.
7640
+
7641
+ >>> s = pd.Series([pd.Timedelta('1 days')])
7642
+ >>> s.abs()
7643
+ 0 1 days
7644
+ dtype: timedelta64[ns]
7645
+
7646
+ Select rows with data closest to certian value using argsort (from
7647
+ `StackOverflow <https://stackoverflow.com/a/17758115>`__).
7648
+
7649
+ >>> df = pd.DataFrame({
7650
+ ... 'a': [4, 5, 6, 7],
7651
+ ... 'b': [10, 20, 30, 40],
7652
+ ... 'c': [100, 50, -30, -50]
7653
+ ... })
7654
+ >>> df
7655
+ a b c
7656
+ 0 4 10 100
7657
+ 1 5 20 50
7658
+ 2 6 30 -30
7659
+ 3 7 40 -50
7660
+ >>> df.loc[(df.c - 43).abs().argsort()]
7661
+ a b c
7662
+ 1 5 20 50
7663
+ 0 4 10 100
7664
+ 2 6 30 -30
7665
+ 3 7 40 -50
7666
+
7667
+ See Also
7668
+ --------
7669
+ numpy.absolute : calculate the absolute value element-wise.
7612
7670
"""
7613
7671
return np .abs (self )
7614
7672
0 commit comments