@@ -3274,7 +3274,107 @@ def resample(self, rule, how=None, axis=0, fill_method=None,
3274
3274
For frequencies that evenly subdivide 1 day, the "origin" of the
3275
3275
aggregated intervals. For example, for '5min' frequency, base could
3276
3276
range from 0 through 4. Defaults to 0
3277
+
3278
+
3279
+ Examples
3280
+ --------
3281
+
3282
+ Start by creating a series with 9 one minute timestamps.
3283
+
3284
+ >>> index = pd.date_range('1/1/2000', periods=9, freq='T')
3285
+ >>> series = pd.Series(range(9), index=index)
3286
+ >>> series
3287
+ 2000-01-01 00:00:00 0
3288
+ 2000-01-01 00:01:00 1
3289
+ 2000-01-01 00:02:00 2
3290
+ 2000-01-01 00:03:00 3
3291
+ 2000-01-01 00:04:00 4
3292
+ 2000-01-01 00:05:00 5
3293
+ 2000-01-01 00:06:00 6
3294
+ 2000-01-01 00:07:00 7
3295
+ 2000-01-01 00:08:00 8
3296
+ Freq: T, dtype: int64
3297
+
3298
+ Downsample the series into 3 minute bins and sum the values
3299
+ of the timestamps falling into a bin.
3300
+
3301
+ >>> series.resample('3T', how='sum')
3302
+ 2000-01-01 00:00:00 3
3303
+ 2000-01-01 00:03:00 12
3304
+ 2000-01-01 00:06:00 21
3305
+ Freq: 3T, dtype: int64
3306
+
3307
+ Downsample the series into 3 minute bins as above, but label each
3308
+ bin using the right edge instead of the left. Please note that the
3309
+ value in the bucket used as the label is not included in the bucket,
3310
+ which it labels. For example, in the original series the
3311
+ bucket ``2000-01-01 00:03:00`` contains the value 3, but the summed
3312
+ value in the resampled bucket with the label``2000-01-01 00:03:00``
3313
+ does not include 3 (if it did, the summed value would be 6, not 3).
3314
+ To include this value close the right side of the bin interval as
3315
+ illustrated in the example below this one.
3316
+
3317
+ >>> series.resample('3T', how='sum', label='right')
3318
+ 2000-01-01 00:03:00 3
3319
+ 2000-01-01 00:06:00 12
3320
+ 2000-01-01 00:09:00 21
3321
+ Freq: 3T, dtype: int64
3322
+
3323
+ Downsample the series into 3 minute bins as above, but close the right
3324
+ side of the bin interval.
3325
+
3326
+ >>> series.resample('3T', how='sum', label='right', closed='right')
3327
+ 2000-01-01 00:00:00 0
3328
+ 2000-01-01 00:03:00 6
3329
+ 2000-01-01 00:06:00 15
3330
+ 2000-01-01 00:09:00 15
3331
+ Freq: 3T, dtype: int64
3332
+
3333
+ Upsample the series into 30 second bins.
3334
+
3335
+ >>> series.resample('30S')[0:5] #select first 5 rows
3336
+ 2000-01-01 00:00:00 0
3337
+ 2000-01-01 00:00:30 NaN
3338
+ 2000-01-01 00:01:00 1
3339
+ 2000-01-01 00:01:30 NaN
3340
+ 2000-01-01 00:02:00 2
3341
+ Freq: 30S, dtype: float64
3342
+
3343
+ Upsample the series into 30 second bins and fill the ``NaN``
3344
+ values using the ``pad`` method.
3345
+
3346
+ >>> series.resample('30S', fill_method='pad')[0:5]
3347
+ 2000-01-01 00:00:00 0
3348
+ 2000-01-01 00:00:30 0
3349
+ 2000-01-01 00:01:00 1
3350
+ 2000-01-01 00:01:30 1
3351
+ 2000-01-01 00:02:00 2
3352
+ Freq: 30S, dtype: int64
3353
+
3354
+ Upsample the series into 30 second bins and fill the
3355
+ ``NaN`` values using the ``bfill`` method.
3356
+
3357
+ >>> series.resample('30S', fill_method='bfill')[0:5]
3358
+ 2000-01-01 00:00:00 0
3359
+ 2000-01-01 00:00:30 1
3360
+ 2000-01-01 00:01:00 1
3361
+ 2000-01-01 00:01:30 2
3362
+ 2000-01-01 00:02:00 2
3363
+ Freq: 30S, dtype: int64
3364
+
3365
+ Pass a custom function to ``how``.
3366
+
3367
+ >>> def custom_resampler(array_like):
3368
+ ... return np.sum(array_like)+5
3369
+
3370
+ >>> series.resample('3T', how=custom_resampler)
3371
+ 2000-01-01 00:00:00 8
3372
+ 2000-01-01 00:03:00 17
3373
+ 2000-01-01 00:06:00 26
3374
+ Freq: 3T, dtype: int64
3375
+
3277
3376
"""
3377
+
3278
3378
from pandas .tseries .resample import TimeGrouper
3279
3379
axis = self ._get_axis_number (axis )
3280
3380
sampler = TimeGrouper (rule , label = label , closed = closed , how = how ,
0 commit comments