Skip to content

Commit 795e059

Browse files
Merge pull request #8487 from jorisvandenbossche/doc-fixes
DOC: fix bunch of doc build errors
2 parents 9010424 + f92b2ab commit 795e059

File tree

8 files changed

+21
-21
lines changed

8 files changed

+21
-21
lines changed

doc/source/api.rst

-1
Original file line numberDiff line numberDiff line change
@@ -819,7 +819,6 @@ Reshaping, sorting, transposing
819819
.. autosummary::
820820
:toctree: generated/
821821

822-
DataFrame.delevel
823822
DataFrame.pivot
824823
DataFrame.reorder_levels
825824
DataFrame.sort

doc/source/index.rst.template

-1
Original file line numberDiff line numberDiff line change
@@ -135,7 +135,6 @@ See the package overview for more detail about what's in the library.
135135
timedeltas
136136
categorical
137137
visualization
138-
rplot
139138
io
140139
remote_data
141140
enhancingperf

doc/source/indexing.rst

+2-3
Original file line numberDiff line numberDiff line change
@@ -106,9 +106,8 @@ of multi-axis indexing.
106106
label based access and not positional access is supported.
107107
Thus, in such cases, it's usually better to be explicit and use ``.iloc`` or ``.loc``.
108108

109-
See more at :ref:`Advanced Indexing <advanced>`, :ref:`Advanced
110-
Hierarchical <advanced.advanced_hierarchical>` and :ref:`Fallback Indexing
111-
<advanced.fallback>`
109+
See more at :ref:`Advanced Indexing <advanced>` and :ref:`Advanced
110+
Hierarchical <advanced.advanced_hierarchical>`.
112111

113112
Getting values from an object with multi-axes selection uses the following
114113
notation (using ``.loc`` as an example, but applies to ``.iloc`` and ``.ix`` as

doc/source/missing_data.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -422,7 +422,7 @@ at the new values.
422422
ser = Series(np.sort(np.random.uniform(size=100)))
423423
424424
# interpolate at new_index
425-
new_index = ser.index + Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75])
425+
new_index = ser.index | Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75])
426426
interp_s = ser.reindex(new_index).interpolate(method='pchip')
427427
interp_s[49:51]
428428

doc/source/visualization.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -689,7 +689,7 @@ See the `matplotlib pie documenation <http://matplotlib.org/api/pyplot_api.html#
689689
690690
plt.close('all')
691691
692-
.. _visualization.missing_data
692+
.. _visualization.missing_data:
693693

694694
Plotting with Missing Data
695695
--------------------------

pandas/core/groupby.py

+9-9
Original file line numberDiff line numberDiff line change
@@ -918,8 +918,8 @@ def cumcount(self, **kwargs):
918918
ascending : bool, default True
919919
If False, number in reverse, from length of group - 1 to 0.
920920
921-
Example
922-
-------
921+
Examples
922+
--------
923923
924924
>>> df = pd.DataFrame([['a'], ['a'], ['a'], ['b'], ['b'], ['a']],
925925
... columns=['A'])
@@ -963,8 +963,8 @@ def head(self, n=5):
963963
Essentially equivalent to ``.apply(lambda x: x.head(n))``,
964964
except ignores as_index flag.
965965
966-
Example
967-
-------
966+
Examples
967+
--------
968968
969969
>>> df = DataFrame([[1, 2], [1, 4], [5, 6]],
970970
columns=['A', 'B'])
@@ -990,8 +990,8 @@ def tail(self, n=5):
990990
Essentially equivalent to ``.apply(lambda x: x.tail(n))``,
991991
except ignores as_index flag.
992992
993-
Example
994-
-------
993+
Examples
994+
--------
995995
996996
>>> df = DataFrame([[1, 2], [1, 4], [5, 6]],
997997
columns=['A', 'B'])
@@ -2452,8 +2452,8 @@ def filter(self, func, dropna=True, *args, **kwargs):
24522452
dropna : Drop groups that do not pass the filter. True by default;
24532453
if False, groups that evaluate False are filled with NaNs.
24542454
2455-
Example
2456-
-------
2455+
Examples
2456+
--------
24572457
>>> grouped.filter(lambda x: x.mean() > 0)
24582458
24592459
Returns
@@ -3084,7 +3084,7 @@ def filter(self, func, dropna=True, *args, **kwargs):
30843084
Each subframe is endowed the attribute 'name' in case you need to know
30853085
which group you are working on.
30863086
3087-
Example
3087+
Examples
30883088
--------
30893089
>>> grouped = df.groupby(lambda x: mapping[x])
30903090
>>> grouped.filter(lambda x: x['A'].sum() + x['B'].sum() > 0)

pandas/io/json.py

+3-1
Original file line numberDiff line numberDiff line change
@@ -573,7 +573,9 @@ def nested_to_record(ds, prefix="", level=0):
573573
-------
574574
d - dict or list of dicts, matching `ds`
575575
576-
Example:
576+
Examples
577+
--------
578+
577579
IN[52]: nested_to_record(dict(flat1=1,dict1=dict(c=1,d=2),
578580
nested=dict(e=dict(c=1,d=2),d=2)))
579581
Out[52]:

pandas/tools/plotting.py

+5-4
Original file line numberDiff line numberDiff line change
@@ -2328,10 +2328,10 @@ def _plot(data, x=None, y=None, subplots=False,
23282328
series_ax = """ax : matplotlib axes object
23292329
If not passed, uses gca()"""
23302330

2331-
df_note = """- If `kind`='bar' or 'barh', you can specify relative alignments
2331+
df_note = """- If `kind` = 'bar' or 'barh', you can specify relative alignments
23322332
for bar plot layout by `position` keyword.
23332333
From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)
2334-
- If `kind`='hexbin', you can control the size of the bins with the
2334+
- If `kind` = 'hexbin', you can control the size of the bins with the
23352335
`gridsize` argument. By default, a histogram of the counts around each
23362336
`(x, y)` point is computed. You can specify alternative aggregations
23372337
by passing values to the `C` and `reduce_C_function` arguments.
@@ -2425,18 +2425,19 @@ def _plot(data, x=None, y=None, subplots=False,
24252425
Notes
24262426
-----
24272427
2428-
If `kind`='hexbin', you can control the size of the bins with the
2428+
If `kind` = 'hexbin', you can control the size of the bins with the
24292429
`gridsize` argument. By default, a histogram of the counts around each
24302430
`(x, y)` point is computed. You can specify alternative aggregations
24312431
by passing values to the `C` and `reduce_C_function` arguments.
24322432
`C` specifies the value at each `(x, y)` point and `reduce_C_function`
24332433
is a function of one argument that reduces all the values in a bin to
24342434
a single number (e.g. `mean`, `max`, `sum`, `std`).
24352435
2436-
If `kind`='scatter' and the argument `c` is the name of a dataframe column,
2436+
If `kind` = 'scatter' and the argument `c` is the name of a dataframe column,
24372437
the values of that column are used to color each point.
24382438
- See matplotlib documentation online for more on this subject
24392439
%(klass_note)s
2440+
24402441
"""
24412442

24422443
@Appender(_shared_docs['plot'] % _shared_doc_df_kwargs)

0 commit comments

Comments
 (0)