@@ -530,22 +530,22 @@ def maybe_booleans_to_slice(ndarray[uint8_t] mask):
530
530
cdef:
531
531
Py_ssize_t i, n = len (mask)
532
532
Py_ssize_t start = 0 , end = 0
533
- bint started = 0 , finished = 0
533
+ bint started = False , finished = False
534
534
535
535
for i in range (n):
536
536
if mask[i]:
537
537
if finished:
538
538
return mask.view(np.bool_)
539
539
if not started:
540
- started = 1
540
+ started = True
541
541
start = i
542
542
else :
543
543
if finished:
544
544
continue
545
545
546
546
if started:
547
547
end = i
548
- finished = 1
548
+ finished = True
549
549
550
550
if not started:
551
551
return slice (0 , 0 )
@@ -657,13 +657,13 @@ def clean_index_list(obj: list):
657
657
cdef:
658
658
Py_ssize_t i, n = len (obj)
659
659
object val
660
- bint all_arrays = 1
660
+ bint all_arrays = True
661
661
662
662
for i in range (n):
663
663
val = obj[i]
664
664
if not (isinstance (val, list ) or
665
665
util.is_array(val) or hasattr (val, ' _data' )):
666
- all_arrays = 0
666
+ all_arrays = False
667
667
break
668
668
669
669
if all_arrays:
@@ -692,7 +692,7 @@ def clean_index_list(obj: list):
692
692
@ cython.boundscheck (False )
693
693
@ cython.wraparound (False )
694
694
def generate_bins_dt64 (ndarray[int64_t] values , const int64_t[:] binner ,
695
- object closed = ' left' , bint hasnans = 0 ):
695
+ object closed = ' left' , bint hasnans = False ):
696
696
"""
697
697
Int64 (datetime64) version of generic python version in ``groupby.py``.
698
698
"""
@@ -1064,29 +1064,29 @@ cdef class Seen:
1064
1064
bint timedelta_ # seen_timedelta
1065
1065
bint datetimetz_ # seen_datetimetz
1066
1066
1067
- def __cinit__ (self , bint coerce_numeric = 0 ):
1067
+ def __cinit__ (self , bint coerce_numeric = False ):
1068
1068
"""
1069
1069
Initialize a Seen instance.
1070
1070
1071
1071
Parameters
1072
1072
----------
1073
- coerce_numeric : bint , default 0
1073
+ coerce_numeric : bool , default False
1074
1074
Whether or not to force conversion to a numeric data type if
1075
1075
initial methods to convert to numeric fail.
1076
1076
"""
1077
- self .int_ = 0
1078
- self .nat_ = 0
1079
- self .bool_ = 0
1080
- self .null_ = 0
1081
- self .nan_ = 0
1082
- self .uint_ = 0
1083
- self .sint_ = 0
1084
- self .float_ = 0
1085
- self .object_ = 0
1086
- self .complex_ = 0
1087
- self .datetime_ = 0
1088
- self .timedelta_ = 0
1089
- self .datetimetz_ = 0
1077
+ self .int_ = False
1078
+ self .nat_ = False
1079
+ self .bool_ = False
1080
+ self .null_ = False
1081
+ self .nan_ = False
1082
+ self .uint_ = False
1083
+ self .sint_ = False
1084
+ self .float_ = False
1085
+ self .object_ = False
1086
+ self .complex_ = False
1087
+ self .datetime_ = False
1088
+ self .timedelta_ = False
1089
+ self .datetimetz_ = False
1090
1090
self .coerce_numeric = coerce_numeric
1091
1091
1092
1092
cdef inline bint check_uint64_conflict(self ) except - 1 :
@@ -1127,8 +1127,8 @@ cdef class Seen:
1127
1127
"""
1128
1128
Set flags indicating that a null value was encountered.
1129
1129
"""
1130
- self .null_ = 1
1131
- self .float_ = 1
1130
+ self .null_ = True
1131
+ self .float_ = True
1132
1132
1133
1133
cdef saw_int(self , object val):
1134
1134
"""
@@ -1147,7 +1147,7 @@ cdef class Seen:
1147
1147
val : Python int
1148
1148
Value with which to set the flags.
1149
1149
"""
1150
- self .int_ = 1
1150
+ self .int_ = True
1151
1151
self .sint_ = self .sint_ or (oINT64_MIN <= val < 0 )
1152
1152
self .uint_ = self .uint_ or (oINT64_MAX < val <= oUINT64_MAX)
1153
1153
@@ -1445,9 +1445,9 @@ def infer_datetimelike_array(arr: object) -> object:
1445
1445
"""
1446
1446
cdef:
1447
1447
Py_ssize_t i , n = len (arr)
1448
- bint seen_timedelta = 0 , seen_date = 0 , seen_datetime = 0
1449
- bint seen_tz_aware = 0 , seen_tz_naive = 0
1450
- bint seen_nat = 0
1448
+ bint seen_timedelta = False , seen_date = False , seen_datetime = False
1449
+ bint seen_tz_aware = False , seen_tz_naive = False
1450
+ bint seen_nat = False
1451
1451
list objs = []
1452
1452
object v
1453
1453
@@ -1463,27 +1463,27 @@ def infer_datetimelike_array(arr: object) -> object:
1463
1463
# nan or None
1464
1464
pass
1465
1465
elif v is NaT:
1466
- seen_nat = 1
1466
+ seen_nat = True
1467
1467
elif PyDateTime_Check(v):
1468
1468
# datetime
1469
- seen_datetime = 1
1469
+ seen_datetime = True
1470
1470
1471
1471
# disambiguate between tz-naive and tz-aware
1472
1472
if v.tzinfo is None :
1473
- seen_tz_naive = 1
1473
+ seen_tz_naive = True
1474
1474
else :
1475
- seen_tz_aware = 1
1475
+ seen_tz_aware = True
1476
1476
1477
1477
if seen_tz_naive and seen_tz_aware:
1478
1478
return ' mixed'
1479
1479
elif util.is_datetime64_object(v):
1480
1480
# np.datetime64
1481
- seen_datetime = 1
1481
+ seen_datetime = True
1482
1482
elif PyDate_Check(v):
1483
- seen_date = 1
1483
+ seen_date = True
1484
1484
elif is_timedelta(v):
1485
1485
# timedelta, or timedelta64
1486
- seen_timedelta = 1
1486
+ seen_timedelta = True
1487
1487
else :
1488
1488
return " mixed"
1489
1489
@@ -2035,10 +2035,10 @@ def maybe_convert_numeric(ndarray[object] values, set na_values,
2035
2035
2036
2036
@ cython.boundscheck (False )
2037
2037
@ cython.wraparound (False )
2038
- def maybe_convert_objects (ndarray[object] objects , bint try_float = 0 ,
2039
- bint safe = 0 , bint convert_datetime = 0 ,
2040
- bint convert_timedelta = 0 ,
2041
- bint convert_to_nullable_integer = 0 ):
2038
+ def maybe_convert_objects (ndarray[object] objects , bint try_float = False ,
2039
+ bint safe = False , bint convert_datetime = False ,
2040
+ bint convert_timedelta = False ,
2041
+ bint convert_to_nullable_integer = False ):
2042
2042
"""
2043
2043
Type inference function-- convert object array to proper dtype
2044
2044
@@ -2102,45 +2102,45 @@ def maybe_convert_objects(ndarray[object] objects, bint try_float=0,
2102
2102
val = objects[i]
2103
2103
2104
2104
if val is None :
2105
- seen.null_ = 1
2105
+ seen.null_ = True
2106
2106
floats[i] = complexes[i] = fnan
2107
2107
mask[i] = True
2108
2108
elif val is NaT:
2109
- seen.nat_ = 1
2109
+ seen.nat_ = True
2110
2110
if convert_datetime:
2111
2111
idatetimes[i] = NPY_NAT
2112
2112
if convert_timedelta:
2113
2113
itimedeltas[i] = NPY_NAT
2114
2114
if not (convert_datetime or convert_timedelta):
2115
- seen.object_ = 1
2115
+ seen.object_ = True
2116
2116
break
2117
2117
elif val is np.nan:
2118
- seen.nan_ = 1
2118
+ seen.nan_ = True
2119
2119
mask[i] = True
2120
2120
floats[i] = complexes[i] = val
2121
2121
elif util.is_bool_object(val):
2122
- seen.bool_ = 1
2122
+ seen.bool_ = True
2123
2123
bools[i] = val
2124
2124
elif util.is_float_object(val):
2125
2125
floats[i] = complexes[i] = val
2126
- seen.float_ = 1
2126
+ seen.float_ = True
2127
2127
elif util.is_datetime64_object(val):
2128
2128
if convert_datetime:
2129
2129
idatetimes[i] = convert_to_tsobject(
2130
2130
val, None , None , 0 , 0 ).value
2131
- seen.datetime_ = 1
2131
+ seen.datetime_ = True
2132
2132
else :
2133
- seen.object_ = 1
2133
+ seen.object_ = True
2134
2134
break
2135
2135
elif is_timedelta(val):
2136
2136
if convert_timedelta:
2137
2137
itimedeltas[i] = convert_to_timedelta64(val, ' ns' )
2138
- seen.timedelta_ = 1
2138
+ seen.timedelta_ = True
2139
2139
else :
2140
- seen.object_ = 1
2140
+ seen.object_ = True
2141
2141
break
2142
2142
elif util.is_integer_object(val):
2143
- seen.int_ = 1
2143
+ seen.int_ = True
2144
2144
floats[i] = < float64_t> val
2145
2145
complexes[i] = < double complex > val
2146
2146
if not seen.null_:
@@ -2149,7 +2149,7 @@ def maybe_convert_objects(ndarray[object] objects, bint try_float=0,
2149
2149
2150
2150
if ((seen.uint_ and seen.sint_) or
2151
2151
val > oUINT64_MAX or val < oINT64_MIN):
2152
- seen.object_ = 1
2152
+ seen.object_ = True
2153
2153
break
2154
2154
2155
2155
if seen.uint_:
@@ -2162,40 +2162,40 @@ def maybe_convert_objects(ndarray[object] objects, bint try_float=0,
2162
2162
2163
2163
elif util.is_complex_object(val):
2164
2164
complexes[i] = val
2165
- seen.complex_ = 1
2165
+ seen.complex_ = True
2166
2166
elif PyDateTime_Check(val) or util.is_datetime64_object(val):
2167
2167
2168
2168
# if we have an tz's attached then return the objects
2169
2169
if convert_datetime:
2170
2170
if getattr (val, ' tzinfo' , None ) is not None :
2171
- seen.datetimetz_ = 1
2171
+ seen.datetimetz_ = True
2172
2172
break
2173
2173
else :
2174
- seen.datetime_ = 1
2174
+ seen.datetime_ = True
2175
2175
idatetimes[i] = convert_to_tsobject(
2176
2176
val, None , None , 0 , 0 ).value
2177
2177
else :
2178
- seen.object_ = 1
2178
+ seen.object_ = True
2179
2179
break
2180
2180
elif try_float and not isinstance (val, str ):
2181
2181
# this will convert Decimal objects
2182
2182
try :
2183
2183
floats[i] = float (val)
2184
2184
complexes[i] = complex (val)
2185
- seen.float_ = 1
2185
+ seen.float_ = True
2186
2186
except (ValueError , TypeError ):
2187
- seen.object_ = 1
2187
+ seen.object_ = True
2188
2188
break
2189
2189
else :
2190
- seen.object_ = 1
2190
+ seen.object_ = True
2191
2191
break
2192
2192
2193
2193
# we try to coerce datetime w/tz but must all have the same tz
2194
2194
if seen.datetimetz_:
2195
2195
if is_datetime_with_singletz_array(objects):
2196
2196
from pandas import DatetimeIndex
2197
2197
return DatetimeIndex(objects)
2198
- seen.object_ = 1
2198
+ seen.object_ = True
2199
2199
2200
2200
if not seen.object_:
2201
2201
if not safe:
@@ -2294,7 +2294,7 @@ no_default = object() #: Sentinel indicating the default value.
2294
2294
2295
2295
@ cython.boundscheck (False )
2296
2296
@ cython.wraparound (False )
2297
- def map_infer_mask (ndarray arr , object f , const uint8_t[:] mask , bint convert = 1 ,
2297
+ def map_infer_mask (ndarray arr , object f , const uint8_t[:] mask , bint convert = True ,
2298
2298
object na_value = no_default, object dtype = object ):
2299
2299
"""
2300
2300
Substitute for np.vectorize with pandas-friendly dtype inference.
@@ -2343,16 +2343,16 @@ def map_infer_mask(ndarray arr, object f, const uint8_t[:] mask, bint convert=1,
2343
2343
2344
2344
if convert:
2345
2345
return maybe_convert_objects(result,
2346
- try_float = 0 ,
2347
- convert_datetime = 0 ,
2348
- convert_timedelta = 0 )
2346
+ try_float = False ,
2347
+ convert_datetime = False ,
2348
+ convert_timedelta = False )
2349
2349
2350
2350
return result
2351
2351
2352
2352
2353
2353
@ cython.boundscheck (False )
2354
2354
@ cython.wraparound (False )
2355
- def map_infer (ndarray arr , object f , bint convert = 1 ):
2355
+ def map_infer (ndarray arr , object f , bint convert = True ):
2356
2356
"""
2357
2357
Substitute for np.vectorize with pandas-friendly dtype inference.
2358
2358
@@ -2385,9 +2385,9 @@ def map_infer(ndarray arr, object f, bint convert=1):
2385
2385
2386
2386
if convert:
2387
2387
return maybe_convert_objects(result,
2388
- try_float = 0 ,
2389
- convert_datetime = 0 ,
2390
- convert_timedelta = 0 )
2388
+ try_float = False ,
2389
+ convert_datetime = False ,
2390
+ convert_timedelta = False )
2391
2391
2392
2392
return result
2393
2393
0 commit comments