@@ -6720,7 +6720,6 @@ def sem(
6720
6720
)
6721
6721
6722
6722
@deprecate_nonkeyword_arguments (version = "3.0" , allowed_args = ["self" ], name = "var" )
6723
- @doc (make_doc ("var" , ndim = 1 ))
6724
6723
def var (
6725
6724
self ,
6726
6725
axis : Axis | None = None ,
@@ -6729,6 +6728,75 @@ def var(
6729
6728
numeric_only : bool = False ,
6730
6729
** kwargs ,
6731
6730
):
6731
+ """
6732
+ Return unbiased variance over requested axis.
6733
+
6734
+ Normalized by N-1 by default. This can be changed using the ddof argument.
6735
+
6736
+ Parameters
6737
+ ----------
6738
+ axis : {index (0)}
6739
+ For `Series` this parameter is unused and defaults to 0.
6740
+
6741
+ .. warning::
6742
+
6743
+ The behavior of DataFrame.var with ``axis=None`` is deprecated,
6744
+ in a future version this will reduce over both axes and return a scalar
6745
+ To retain the old behavior, pass axis=0 (or do not pass axis).
6746
+
6747
+ skipna : bool, default True
6748
+ Exclude NA/null values. If an entire row/column is NA, the result
6749
+ will be NA.
6750
+ ddof : int, default 1
6751
+ Delta Degrees of Freedom. The divisor used in calculations is N - ddof,
6752
+ where N represents the number of elements.
6753
+ numeric_only : bool, default False
6754
+ Include only float, int, boolean columns. Not implemented for Series.
6755
+ **kwargs :
6756
+ Additional keywords passed.
6757
+
6758
+ Returns
6759
+ -------
6760
+ scalar or Series (if level specified)
6761
+ Unbiased variance over requested axis.
6762
+
6763
+ See Also
6764
+ --------
6765
+ numpy.var : Equivalent function in NumPy.
6766
+ Series.std : Returns the standard deviation of the Series.
6767
+ DataFrame.var : Returns the variance of the DataFrame.
6768
+ DataFrame.std : Return standard deviation of the values over
6769
+ the requested axis.
6770
+
6771
+ Examples
6772
+ --------
6773
+ >>> df = pd.DataFrame(
6774
+ ... {
6775
+ ... "person_id": [0, 1, 2, 3],
6776
+ ... "age": [21, 25, 62, 43],
6777
+ ... "height": [1.61, 1.87, 1.49, 2.01],
6778
+ ... }
6779
+ ... ).set_index("person_id")
6780
+ >>> df
6781
+ age height
6782
+ person_id
6783
+ 0 21 1.61
6784
+ 1 25 1.87
6785
+ 2 62 1.49
6786
+ 3 43 2.01
6787
+
6788
+ >>> df.var()
6789
+ age 352.916667
6790
+ height 0.056367
6791
+ dtype: float64
6792
+
6793
+ Alternatively, ``ddof=0`` can be set to normalize by N instead of N-1:
6794
+
6795
+ >>> df.var(ddof=0)
6796
+ age 264.687500
6797
+ height 0.042275
6798
+ dtype: float64
6799
+ """
6732
6800
return NDFrame .var (
6733
6801
self ,
6734
6802
axis = axis ,
0 commit comments