@@ -492,12 +492,11 @@ Similarly, you can get the most frequently occuring value(s) (the mode) of the v
492
492
493
493
.. ipython :: python
494
494
495
- data = [1 , 1 , 3 , 3 , 3 , 5 , 5 , 7 , 7 , 7 ]
496
- s = Series(data)
497
- s.mode()
498
- df = pd.DataFrame({" A" : np.random.randint(0 , 7 , size = 50 ),
499
- " B" : np.random.randint(- 10 , 15 , size = 50 )})
500
- df.mode()
495
+ s5 = Series([1 , 1 , 3 , 3 , 3 , 5 , 5 , 7 , 7 , 7 ])
496
+ s5.mode()
497
+ df5 = DataFrame({" A" : np.random.randint(0 , 7 , size = 50 ),
498
+ " B" : np.random.randint(- 10 , 15 , size = 50 )})
499
+ df5.mode()
501
500
502
501
503
502
Discretization and quantiling
@@ -613,11 +612,17 @@ another array or value), the methods ``applymap`` on DataFrame and analogously
613
612
``map `` on Series accept any Python function taking a single value and
614
613
returning a single value. For example:
615
614
615
+ .. ipython :: python
616
+ :suppress:
617
+
618
+ df4 = df_orig.copy()
619
+
616
620
.. ipython :: python
617
621
622
+ df4
618
623
f = lambda x : len (str (x))
619
- df [' one' ].map(f)
620
- df .applymap(f)
624
+ df4 [' one' ].map(f)
625
+ df4 .applymap(f)
621
626
622
627
``Series.map `` has an additional feature which is that it can be used to easily
623
628
"link" or "map" values defined by a secondary series. This is closely related
@@ -712,13 +717,13 @@ make this simpler:
712
717
:suppress:
713
718
714
719
df2 = df.reindex([' a' , ' b' , ' c' ], columns = [' one' , ' two' ])
715
- df2 = df2 - df2.mean()
720
+ df3 = df2 - df2.mean()
716
721
717
722
718
723
.. ipython :: python
719
724
720
- df
721
725
df2
726
+ df3
722
727
df.reindex_like(df2)
723
728
724
729
Reindexing with ``reindex_axis ``
@@ -1010,7 +1015,7 @@ Extracting Substrings
1010
1015
~~~~~~~~~~~~~~~~~~~~~
1011
1016
1012
1017
The method ``extract `` (introduced in version 0.13) accepts regular expressions
1013
- with match groups. Extracting a regular expression with one group returns
1018
+ with match groups. Extracting a regular expression with one group returns
1014
1019
a Series of strings.
1015
1020
1016
1021
.. ipython :: python
@@ -1043,7 +1048,7 @@ and optional groups like
1043
1048
1044
1049
can also be used.
1045
1050
1046
- Testing for Strings that Match or Contain a Pattern
1051
+ Testing for Strings that Match or Contain a Pattern
1047
1052
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1048
1053
1049
1054
In previous versions, *extracting * match groups was accomplished by ``match ``,
@@ -1055,8 +1060,8 @@ The distinction between
1055
1060
``match `` and ``contains `` is strictness: ``match `` relies on
1056
1061
strict ``re.match `` while ``contains `` relies on ``re.search ``.
1057
1062
1058
- In version 0.13, ``match `` performs its old, deprecated behavior by default,
1059
- but the new behavior is availabe through the keyword argument
1063
+ In version 0.13, ``match `` performs its old, deprecated behavior by default,
1064
+ but the new behavior is availabe through the keyword argument
1060
1065
``as_indexer=True ``.
1061
1066
1062
1067
Methods like ``match ``, ``contains ``, ``startswith ``, and ``endswith `` take
@@ -1118,13 +1123,13 @@ determine the sort order:
1118
1123
1119
1124
.. ipython :: python
1120
1125
1121
- df.sort_index(by = ' two' )
1126
+ df1 = DataFrame({' one' :[2 ,1 ,1 ,1 ],' two' :[1 ,3 ,2 ,4 ],' three' :[5 ,4 ,3 ,2 ]})
1127
+ df1.sort_index(by = ' two' )
1122
1128
1123
1129
The ``by `` argument can take a list of column names, e.g.:
1124
1130
1125
1131
.. ipython :: python
1126
1132
1127
- df1 = DataFrame({' one' :[2 ,1 ,1 ,1 ],' two' :[1 ,3 ,2 ,4 ],' three' :[5 ,4 ,3 ,2 ]})
1128
1133
df1[[' one' , ' two' , ' three' ]].sort_index(by = [' one' ,' two' ])
1129
1134
1130
1135
Series has the method ``order `` (analogous to `R's order function
0 commit comments