|
16 | 16 | indices = np.random.randint(100, size=SIZE)
|
17 | 17 | int_values_dup = int_values_uniq.take(indices)
|
18 | 18 | str_values_dup = str_values_uniq.take(indices)
|
| 19 | +shortstr_values_dup = Index(np.take(['AA', 'BB', 'CC', 'DD'], |
| 20 | + np.random.randint(4, size=SIZE))) |
19 | 21 | float_values_dup = float_values_uniq.take(indices)
|
20 | 22 | """
|
21 | 23 |
|
22 | 24 |
|
23 |
| -factorize_int_dup = Benchmark("factorize(int_values_dup)", setup, |
24 |
| - start_date=START_DATE) |
25 | 25 | factorize_int_uniq = Benchmark("factorize(int_values_uniq)", setup,
|
26 | 26 | start_date=START_DATE)
|
27 |
| - |
28 |
| -factorize_str_dup = Benchmark("factorize(str_values_dup)", setup, |
| 27 | +factorize_int_dup = Benchmark("factorize(int_values_dup)", setup, |
29 | 28 | start_date=START_DATE)
|
| 29 | + |
30 | 30 | factorize_str_uniq = Benchmark("factorize(str_values_uniq)", setup,
|
31 | 31 | start_date=START_DATE)
|
| 32 | +factorize_str_dup = Benchmark("factorize(str_values_dup)", setup, |
| 33 | + start_date=START_DATE) |
| 34 | +factorize_shortstr_dup = Benchmark("factorize(shortstr_values_dup)", setup, |
| 35 | + start_date=START_DATE) |
32 | 36 |
|
33 |
| -factorize_float_dup = Benchmark("factorize(float_values_dup)", setup, |
34 |
| - start_date=START_DATE) |
35 | 37 | factorize_float_uniq = Benchmark("factorize(float_values_uniq)", setup,
|
36 | 38 | start_date=START_DATE)
|
| 39 | +factorize_float_dup = Benchmark("factorize(float_values_dup)", setup, |
| 40 | + start_date=START_DATE) |
0 commit comments