@@ -10298,7 +10298,14 @@ def pct_change(
10298
10298
return rs
10299
10299
10300
10300
@final
10301
- def _agg_by_level (self , name , axis = 0 , level = 0 , skipna = True , ** kwargs ):
10301
+ def _agg_by_level (
10302
+ self ,
10303
+ name : str ,
10304
+ axis : Axis = 0 ,
10305
+ level : Level = 0 ,
10306
+ skipna : bool_t = True ,
10307
+ ** kwargs ,
10308
+ ):
10302
10309
if axis is None :
10303
10310
raise ValueError ("Must specify 'axis' when aggregating by level." )
10304
10311
grouped = self .groupby (level = level , axis = axis , sort = False )
@@ -10311,8 +10318,15 @@ def _agg_by_level(self, name, axis=0, level=0, skipna=True, **kwargs):
10311
10318
10312
10319
@final
10313
10320
def _logical_func (
10314
- self , name : str , func , axis = 0 , bool_only = None , skipna = True , level = None , ** kwargs
10315
- ):
10321
+ self ,
10322
+ name : str ,
10323
+ func ,
10324
+ axis : Axis = 0 ,
10325
+ bool_only : bool_t | None = None ,
10326
+ skipna : bool_t = True ,
10327
+ level : Level | None = None ,
10328
+ ** kwargs ,
10329
+ ) -> Series | bool_t :
10316
10330
nv .validate_logical_func ((), kwargs , fname = name )
10317
10331
validate_bool_kwarg (skipna , "skipna" , none_allowed = False )
10318
10332
if level is not None :
@@ -10345,18 +10359,40 @@ def _logical_func(
10345
10359
filter_type = "bool" ,
10346
10360
)
10347
10361
10348
- def any (self , axis = 0 , bool_only = None , skipna = True , level = None , ** kwargs ):
10362
+ def any (
10363
+ self ,
10364
+ axis : Axis = 0 ,
10365
+ bool_only : bool_t | None = None ,
10366
+ skipna : bool_t = True ,
10367
+ level : Level | None = None ,
10368
+ ** kwargs ,
10369
+ ) -> Series | bool_t :
10349
10370
return self ._logical_func (
10350
10371
"any" , nanops .nanany , axis , bool_only , skipna , level , ** kwargs
10351
10372
)
10352
10373
10353
- def all (self , axis = 0 , bool_only = None , skipna = True , level = None , ** kwargs ):
10374
+ def all (
10375
+ self ,
10376
+ axis : Axis = 0 ,
10377
+ bool_only : bool_t | None = None ,
10378
+ skipna : bool_t = True ,
10379
+ level : Level | None = None ,
10380
+ ** kwargs ,
10381
+ ) -> Series | bool_t :
10354
10382
return self ._logical_func (
10355
10383
"all" , nanops .nanall , axis , bool_only , skipna , level , ** kwargs
10356
10384
)
10357
10385
10358
10386
@final
10359
- def _accum_func (self , name : str , func , axis = None , skipna = True , * args , ** kwargs ):
10387
+ def _accum_func (
10388
+ self ,
10389
+ name : str ,
10390
+ func ,
10391
+ axis : Axis | None = None ,
10392
+ skipna : bool_t = True ,
10393
+ * args ,
10394
+ ** kwargs ,
10395
+ ):
10360
10396
skipna = nv .validate_cum_func_with_skipna (skipna , args , kwargs , name )
10361
10397
if axis is None :
10362
10398
axis = self ._stat_axis_number
@@ -10380,34 +10416,34 @@ def block_accum_func(blk_values):
10380
10416
10381
10417
return self ._constructor (result ).__finalize__ (self , method = name )
10382
10418
10383
- def cummax (self , axis = None , skipna = True , * args , ** kwargs ):
10419
+ def cummax (self , axis : Axis | None = None , skipna : bool_t = True , * args , ** kwargs ):
10384
10420
return self ._accum_func (
10385
10421
"cummax" , np .maximum .accumulate , axis , skipna , * args , ** kwargs
10386
10422
)
10387
10423
10388
- def cummin (self , axis = None , skipna = True , * args , ** kwargs ):
10424
+ def cummin (self , axis : Axis | None = None , skipna : bool_t = True , * args , ** kwargs ):
10389
10425
return self ._accum_func (
10390
10426
"cummin" , np .minimum .accumulate , axis , skipna , * args , ** kwargs
10391
10427
)
10392
10428
10393
- def cumsum (self , axis = None , skipna = True , * args , ** kwargs ):
10429
+ def cumsum (self , axis : Axis | None = None , skipna : bool_t = True , * args , ** kwargs ):
10394
10430
return self ._accum_func ("cumsum" , np .cumsum , axis , skipna , * args , ** kwargs )
10395
10431
10396
- def cumprod (self , axis = None , skipna = True , * args , ** kwargs ):
10432
+ def cumprod (self , axis : Axis | None = None , skipna : bool_t = True , * args , ** kwargs ):
10397
10433
return self ._accum_func ("cumprod" , np .cumprod , axis , skipna , * args , ** kwargs )
10398
10434
10399
10435
@final
10400
10436
def _stat_function_ddof (
10401
10437
self ,
10402
10438
name : str ,
10403
10439
func ,
10404
- axis = None ,
10405
- skipna = True ,
10406
- level = None ,
10407
- ddof = 1 ,
10408
- numeric_only = None ,
10440
+ axis : Axis | None = None ,
10441
+ skipna : bool_t = True ,
10442
+ level : Level | None = None ,
10443
+ ddof : int = 1 ,
10444
+ numeric_only : bool_t | None = None ,
10409
10445
** kwargs ,
10410
- ):
10446
+ ) -> Series | float :
10411
10447
nv .validate_stat_ddof_func ((), kwargs , fname = name )
10412
10448
validate_bool_kwarg (skipna , "skipna" , none_allowed = False )
10413
10449
if axis is None :
@@ -10428,22 +10464,40 @@ def _stat_function_ddof(
10428
10464
)
10429
10465
10430
10466
def sem (
10431
- self , axis = None , skipna = True , level = None , ddof = 1 , numeric_only = None , ** kwargs
10432
- ):
10467
+ self ,
10468
+ axis : Axis | None = None ,
10469
+ skipna : bool_t = True ,
10470
+ level : Level | None = None ,
10471
+ ddof : int = 1 ,
10472
+ numeric_only : bool_t | None = None ,
10473
+ ** kwargs ,
10474
+ ) -> Series | float :
10433
10475
return self ._stat_function_ddof (
10434
10476
"sem" , nanops .nansem , axis , skipna , level , ddof , numeric_only , ** kwargs
10435
10477
)
10436
10478
10437
10479
def var (
10438
- self , axis = None , skipna = True , level = None , ddof = 1 , numeric_only = None , ** kwargs
10439
- ):
10480
+ self ,
10481
+ axis : Axis | None = None ,
10482
+ skipna : bool_t = True ,
10483
+ level : Level | None = None ,
10484
+ ddof : int = 1 ,
10485
+ numeric_only : bool_t | None = None ,
10486
+ ** kwargs ,
10487
+ ) -> Series | float :
10440
10488
return self ._stat_function_ddof (
10441
10489
"var" , nanops .nanvar , axis , skipna , level , ddof , numeric_only , ** kwargs
10442
10490
)
10443
10491
10444
10492
def std (
10445
- self , axis = None , skipna = True , level = None , ddof = 1 , numeric_only = None , ** kwargs
10446
- ):
10493
+ self ,
10494
+ axis : Axis | None = None ,
10495
+ skipna : bool_t = True ,
10496
+ level : Level | None = None ,
10497
+ ddof : int = 1 ,
10498
+ numeric_only : bool_t | None = None ,
10499
+ ** kwargs ,
10500
+ ) -> Series | float :
10447
10501
return self ._stat_function_ddof (
10448
10502
"std" , nanops .nanstd , axis , skipna , level , ddof , numeric_only , ** kwargs
10449
10503
)
@@ -10453,10 +10507,10 @@ def _stat_function(
10453
10507
self ,
10454
10508
name : str ,
10455
10509
func ,
10456
- axis = None ,
10457
- skipna = True ,
10458
- level = None ,
10459
- numeric_only = None ,
10510
+ axis : Axis | None = None ,
10511
+ skipna : bool_t = True ,
10512
+ level : Level | None = None ,
10513
+ numeric_only : bool_t | None = None ,
10460
10514
** kwargs ,
10461
10515
):
10462
10516
if name == "median" :
@@ -10483,32 +10537,74 @@ def _stat_function(
10483
10537
func , name = name , axis = axis , skipna = skipna , numeric_only = numeric_only
10484
10538
)
10485
10539
10486
- def min (self , axis = None , skipna = True , level = None , numeric_only = None , ** kwargs ):
10540
+ def min (
10541
+ self ,
10542
+ axis : Axis | None = None ,
10543
+ skipna : bool_t = True ,
10544
+ level : Level | None = None ,
10545
+ numeric_only : bool_t | None = None ,
10546
+ ** kwargs ,
10547
+ ):
10487
10548
return self ._stat_function (
10488
10549
"min" , nanops .nanmin , axis , skipna , level , numeric_only , ** kwargs
10489
10550
)
10490
10551
10491
- def max (self , axis = None , skipna = True , level = None , numeric_only = None , ** kwargs ):
10552
+ def max (
10553
+ self ,
10554
+ axis : Axis | None = None ,
10555
+ skipna : bool_t = True ,
10556
+ level : Level | None = None ,
10557
+ numeric_only : bool_t | None = None ,
10558
+ ** kwargs ,
10559
+ ):
10492
10560
return self ._stat_function (
10493
10561
"max" , nanops .nanmax , axis , skipna , level , numeric_only , ** kwargs
10494
10562
)
10495
10563
10496
- def mean (self , axis = None , skipna = True , level = None , numeric_only = None , ** kwargs ):
10564
+ def mean (
10565
+ self ,
10566
+ axis : Axis | None = None ,
10567
+ skipna : bool_t = True ,
10568
+ level : Level | None = None ,
10569
+ numeric_only : bool_t | None = None ,
10570
+ ** kwargs ,
10571
+ ) -> Series | float :
10497
10572
return self ._stat_function (
10498
10573
"mean" , nanops .nanmean , axis , skipna , level , numeric_only , ** kwargs
10499
10574
)
10500
10575
10501
- def median (self , axis = None , skipna = True , level = None , numeric_only = None , ** kwargs ):
10576
+ def median (
10577
+ self ,
10578
+ axis : Axis | None = None ,
10579
+ skipna : bool_t = True ,
10580
+ level : Level | None = None ,
10581
+ numeric_only : bool_t | None = None ,
10582
+ ** kwargs ,
10583
+ ) -> Series | float :
10502
10584
return self ._stat_function (
10503
10585
"median" , nanops .nanmedian , axis , skipna , level , numeric_only , ** kwargs
10504
10586
)
10505
10587
10506
- def skew (self , axis = None , skipna = True , level = None , numeric_only = None , ** kwargs ):
10588
+ def skew (
10589
+ self ,
10590
+ axis : Axis | None = None ,
10591
+ skipna : bool_t = True ,
10592
+ level : Level | None = None ,
10593
+ numeric_only : bool_t | None = None ,
10594
+ ** kwargs ,
10595
+ ) -> Series | float :
10507
10596
return self ._stat_function (
10508
10597
"skew" , nanops .nanskew , axis , skipna , level , numeric_only , ** kwargs
10509
10598
)
10510
10599
10511
- def kurt (self , axis = None , skipna = True , level = None , numeric_only = None , ** kwargs ):
10600
+ def kurt (
10601
+ self ,
10602
+ axis : Axis | None = None ,
10603
+ skipna : bool_t = True ,
10604
+ level : Level | None = None ,
10605
+ numeric_only : bool_t | None = None ,
10606
+ ** kwargs ,
10607
+ ) -> Series | float :
10512
10608
return self ._stat_function (
10513
10609
"kurt" , nanops .nankurt , axis , skipna , level , numeric_only , ** kwargs
10514
10610
)
@@ -10520,11 +10616,11 @@ def _min_count_stat_function(
10520
10616
self ,
10521
10617
name : str ,
10522
10618
func ,
10523
- axis = None ,
10524
- skipna = True ,
10525
- level = None ,
10526
- numeric_only = None ,
10527
- min_count = 0 ,
10619
+ axis : Axis | None = None ,
10620
+ skipna : bool_t = True ,
10621
+ level : Level | None = None ,
10622
+ numeric_only : bool_t | None = None ,
10623
+ min_count : int = 0 ,
10528
10624
** kwargs ,
10529
10625
):
10530
10626
if name == "sum" :
@@ -10565,10 +10661,10 @@ def _min_count_stat_function(
10565
10661
10566
10662
def sum (
10567
10663
self ,
10568
- axis = None ,
10569
- skipna = True ,
10570
- level = None ,
10571
- numeric_only = None ,
10664
+ axis : Axis | None = None ,
10665
+ skipna : bool_t = True ,
10666
+ level : Level | None = None ,
10667
+ numeric_only : bool_t | None = None ,
10572
10668
min_count = 0 ,
10573
10669
** kwargs ,
10574
10670
):
@@ -10578,11 +10674,11 @@ def sum(
10578
10674
10579
10675
def prod (
10580
10676
self ,
10581
- axis = None ,
10582
- skipna = True ,
10583
- level = None ,
10584
- numeric_only = None ,
10585
- min_count = 0 ,
10677
+ axis : Axis | None = None ,
10678
+ skipna : bool_t = True ,
10679
+ level : Level | None = None ,
10680
+ numeric_only : bool_t | None = None ,
10681
+ min_count : int = 0 ,
10586
10682
** kwargs ,
10587
10683
):
10588
10684
return self ._min_count_stat_function (
@@ -10598,7 +10694,12 @@ def prod(
10598
10694
10599
10695
product = prod
10600
10696
10601
- def mad (self , axis = None , skipna = True , level = None ):
10697
+ def mad (
10698
+ self ,
10699
+ axis : Axis | None = None ,
10700
+ skipna : bool_t = True ,
10701
+ level : Level | None = None ,
10702
+ ) -> Series | float :
10602
10703
"""
10603
10704
{desc}
10604
10705
0 commit comments