@@ -486,6 +486,81 @@ class _read_shared(TypedDict, Generic[HashableT], total=False):
486
486
Examples
487
487
--------
488
488
>>> pd.{func_name}('data.csv') # doctest: +SKIP
489
+ Name Value
490
+ 0 foo 1
491
+ 1 bar 2
492
+ 2 #baz 3
493
+
494
+ Index and header can be specified via the `index_col` and `header` arguments.
495
+
496
+ >>> pd.{func_name}('data.csv', header=None) # doctest: +SKIP
497
+ 0 1
498
+ 0 Name Value
499
+ 1 foo 1
500
+ 2 bar 2
501
+ 3 #baz 3
502
+
503
+ >>> pd.{func_name}('data.csv', index_col='Value') # doctest: +SKIP
504
+ Name
505
+ Value
506
+ 1 foo
507
+ 2 bar
508
+ 3 #baz
509
+
510
+ Column types are inferred but can be explicitly specified using the dtype argument.
511
+
512
+ >>> pd.{func_name}('data.csv', dtype={{'Value': float}}) # doctest: +SKIP
513
+ Name Value
514
+ 0 foo 1.0
515
+ 1 bar 2.0
516
+ 2 #baz 3.0
517
+
518
+ True, False, and NA values, and thousands separators have defaults,
519
+ but can be explicitly specified, too. Supply the values you would like
520
+ as strings or lists of strings!
521
+
522
+ >>> pd.{func_name}('data.csv', na_values=['foo', 'bar']) # doctest: +SKIP
523
+ Name Value
524
+ 0 NaN 1
525
+ 1 NaN 2
526
+ 2 #baz 3
527
+
528
+ Comment lines in the input file can be skipped using the `comment` argument.
529
+
530
+ >>> pd.{func_name}('data.csv', comment='#') # doctest: +SKIP
531
+ Name Value
532
+ 0 foo 1
533
+ 1 bar 2
534
+
535
+ By default, columns with dates will be read as ``object`` rather than ``datetime``.
536
+
537
+ >>> df = pd.{func_name}('tmp.csv') # doctest: +SKIP
538
+
539
+ >>> df # doctest: +SKIP
540
+ col 1 col 2 col 3
541
+ 0 10 10/04/2018 Sun 15 Jan 2023
542
+ 1 20 15/04/2018 Fri 12 May 2023
543
+
544
+ >>> df.dtypes # doctest: +SKIP
545
+ col 1 int64
546
+ col 2 object
547
+ col 3 object
548
+ dtype: object
549
+
550
+ Specific columns can be parsed as dates by using the `parse_dates` and
551
+ `date_format` arguments.
552
+
553
+ >>> df = pd.{func_name}(
554
+ ... 'tmp.csv',
555
+ ... parse_dates=[1, 2],
556
+ ... date_format={{'col 2': '%d/%m/%Y', 'col 3': '%a %d %b %Y'}},
557
+ ... ) # doctest: +SKIP
558
+
559
+ >>> df.dtypes # doctest: +SKIP
560
+ col 1 int64
561
+ col 2 datetime64[ns]
562
+ col 3 datetime64[ns]
563
+ dtype: object
489
564
"""
490
565
)
491
566
0 commit comments