@@ -37,6 +37,43 @@ See :ref:`policies.version` for more.
37
37
Enhancements
38
38
~~~~~~~~~~~~
39
39
40
+ .. _whatsnew_100.numba_rolling_apply :
41
+
42
+ Using Numba in ``rolling.apply `` and ``expanding.apply ``
43
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
44
+
45
+ We've added an ``engine `` keyword to :meth: `~core.window.rolling.Rolling.apply ` and :meth: `~core.window.expanding.Expanding.apply `
46
+ that allows the user to execute the routine using `Numba <https://numba.pydata.org/ >`__ instead of Cython.
47
+ Using the Numba engine can yield significant performance gains if the apply function can operate on numpy arrays and
48
+ the data set is larger (1 million rows or greater). For more details, see
49
+ :ref: `rolling apply documentation <stats.rolling_apply >` (:issue: `28987 `, :issue: `30936 `)
50
+
51
+ .. _whatsnew_100.custom_window :
52
+
53
+ Defining custom windows for rolling operations
54
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
55
+
56
+ We've added a :func: `pandas.api.indexers.BaseIndexer ` class that allows users to define how
57
+ window bounds are created during ``rolling `` operations. Users can define their own ``get_window_bounds ``
58
+ method on a :func: `pandas.api.indexers.BaseIndexer ` subclass that will generate the start and end
59
+ indices used for each window during the rolling aggregation. For more details and example usage, see
60
+ the :ref: `custom window rolling documentation <stats.custom_rolling_window >`
61
+
62
+ .. _whatsnew_100.to_markdown :
63
+
64
+ Converting to Markdown
65
+ ^^^^^^^^^^^^^^^^^^^^^^
66
+
67
+ We've added :meth: `~DataFrame.to_markdown ` for creating a markdown table (:issue: `11052 `)
68
+
69
+ .. ipython :: python
70
+
71
+ df = pd.DataFrame({" A" : [1 , 2 , 3 ], " B" : [1 , 2 , 3 ]}, index = [' a' , ' a' , ' b' ])
72
+ print (df.to_markdown())
73
+
74
+ Experimental new features
75
+ ~~~~~~~~~~~~~~~~~~~~~~~~~
76
+
40
77
.. _whatsnew_100.NA :
41
78
42
79
Experimental ``NA `` scalar to denote missing values
@@ -187,44 +224,11 @@ This is especially useful after reading in data using readers such as :func:`rea
187
224
and :func: `read_excel `.
188
225
See :ref: `here <missing_data.NA.conversion >` for a description.
189
226
190
- .. _whatsnew_100.numba_rolling_apply :
191
-
192
- Using Numba in ``rolling.apply ``
193
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
194
-
195
- We've added an ``engine `` keyword to :meth: `~core.window.rolling.Rolling.apply ` that allows the user to execute the
196
- routine using `Numba <https://numba.pydata.org/ >`__ instead of Cython. Using the Numba engine
197
- can yield significant performance gains if the apply function can operate on numpy arrays and
198
- the data set is larger (1 million rows or greater). For more details, see
199
- :ref: `rolling apply documentation <stats.rolling_apply >` (:issue: `28987 `)
200
-
201
- .. _whatsnew_100.custom_window :
202
-
203
- Defining custom windows for rolling operations
204
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
205
-
206
- We've added a :func: `pandas.api.indexers.BaseIndexer ` class that allows users to define how
207
- window bounds are created during ``rolling `` operations. Users can define their own ``get_window_bounds ``
208
- method on a :func: `pandas.api.indexers.BaseIndexer ` subclass that will generate the start and end
209
- indices used for each window during the rolling aggregation. For more details and example usage, see
210
- the :ref: `custom window rolling documentation <stats.custom_rolling_window >`
211
-
212
- .. _whatsnew_100.to_markdown :
213
-
214
- Converting to Markdown
215
- ^^^^^^^^^^^^^^^^^^^^^^
216
-
217
- We've added :meth: `~DataFrame.to_markdown ` for creating a markdown table (:issue: `11052 `)
218
-
219
- .. ipython :: python
220
-
221
- df = pd.DataFrame({" A" : [1 , 2 , 3 ], " B" : [1 , 2 , 3 ]}, index = [' a' , ' a' , ' b' ])
222
- print (df.to_markdown())
223
227
224
228
.. _whatsnew_100.enhancements.other :
225
229
226
230
Other enhancements
227
- ^^^^^^^^^^^^^^^^^^
231
+ ~~~~~~~~~~~~~~~~~~
228
232
229
233
- :meth: `DataFrame.to_string ` added the ``max_colwidth `` parameter to control when wide columns are truncated (:issue: `9784 `)
230
234
- Added the ``na_value `` argument to :meth: `Series.to_numpy `, :meth: `Index.to_numpy ` and :meth: `DataFrame.to_numpy ` to control the value used for missing data (:issue: `30322 `)
@@ -257,13 +261,6 @@ Other enhancements
257
261
- :meth: `DataFrame.to_pickle ` and :func: `read_pickle ` now accept URL (:issue: `30163 `)
258
262
259
263
260
- Build Changes
261
- ^^^^^^^^^^^^^
262
-
263
- Pandas has added a `pyproject.toml <https://www.python.org/dev/peps/pep-0517/ >`_ file and will no longer include
264
- cythonized files in the source distribution uploaded to PyPI (:issue: `28341 `, :issue: `20775 `). If you're installing
265
- a built distribution (wheel) or via conda, this shouldn't have any effect on you. If you're building pandas from
266
- source, you should no longer need to install Cython into your build environment before calling ``pip install pandas ``.
267
264
268
265
.. ---------------------------------------------------------------------------
269
266
@@ -749,6 +746,15 @@ Optional libraries below the lowest tested version may still work, but are not c
749
746
750
747
See :ref: `install.dependencies ` and :ref: `install.optional_dependencies ` for more.
751
748
749
+ Build Changes
750
+ ^^^^^^^^^^^^^
751
+
752
+ Pandas has added a `pyproject.toml <https://www.python.org/dev/peps/pep-0517/ >`_ file and will no longer include
753
+ cythonized files in the source distribution uploaded to PyPI (:issue: `28341 `, :issue: `20775 `). If you're installing
754
+ a built distribution (wheel) or via conda, this shouldn't have any effect on you. If you're building pandas from
755
+ source, you should no longer need to install Cython into your build environment before calling ``pip install pandas ``.
756
+
757
+
752
758
.. _whatsnew_100.api.other :
753
759
754
760
Other API changes
0 commit comments