@@ -1095,34 +1095,6 @@ def count(self, level=None):
1095
1095
1096
1096
return notnull (_values_from_object (self )).sum ()
1097
1097
1098
- def value_counts (self , normalize = False , sort = True , ascending = False ,
1099
- bins = None ):
1100
- """
1101
- Returns Series containing counts of unique values. The resulting Series
1102
- will be in descending order so that the first element is the most
1103
- frequently-occurring element. Excludes NA values
1104
-
1105
- Parameters
1106
- ----------
1107
- normalize : boolean, default False
1108
- If True then the Series returned will contain the relative
1109
- frequencies of the unique values.
1110
- sort : boolean, default True
1111
- Sort by values
1112
- ascending : boolean, default False
1113
- Sort in ascending order
1114
- bins : integer, optional
1115
- Rather than count values, group them into half-open bins,
1116
- a convenience for pd.cut, only works with numeric data
1117
-
1118
- Returns
1119
- -------
1120
- counts : Series
1121
- """
1122
- from pandas .core .algorithms import value_counts
1123
- return value_counts (self .values , sort = sort , ascending = ascending ,
1124
- normalize = normalize , bins = bins )
1125
-
1126
1098
def mode (self ):
1127
1099
"""Returns the mode(s) of the dataset.
1128
1100
@@ -1143,27 +1115,6 @@ def mode(self):
1143
1115
from pandas .core .algorithms import mode
1144
1116
return mode (self )
1145
1117
1146
- def unique (self ):
1147
- """
1148
- Return array of unique values in the Series. Significantly faster than
1149
- numpy.unique
1150
-
1151
- Returns
1152
- -------
1153
- uniques : ndarray
1154
- """
1155
- return nanops .unique1d (self .values )
1156
-
1157
- def nunique (self ):
1158
- """
1159
- Return count of unique elements in the Series
1160
-
1161
- Returns
1162
- -------
1163
- nunique : int
1164
- """
1165
- return len (self .value_counts ())
1166
-
1167
1118
def drop_duplicates (self , take_last = False , inplace = False ):
1168
1119
"""
1169
1120
Return Series with duplicate values removed
0 commit comments