@@ -1026,77 +1026,38 @@ def test_nunique_with_timegrouper():
1026
1026
1027
1027
1028
1028
@pytest .mark .parametrize (
1029
- "data, dropna, expected" ,
1029
+ "key, data, dropna, expected" ,
1030
1030
[
1031
1031
(
1032
- DataFrame (
1033
- {
1034
- "key" : ["x" , "x" , "x" , "x" , "x" ],
1035
- "data" : [
1036
- Timestamp ("2019-01-01 00:00:00" ),
1037
- NaT ,
1038
- Timestamp ("2019-01-01 00:00:00" ),
1039
- NaT ,
1040
- Timestamp ("2019-01-01 00:00:00" ),
1041
- ],
1042
- }
1043
- ),
1032
+ ["x" , "x" , "x" ],
1033
+ [Timestamp ("2019-01-01" ), NaT , Timestamp ("2019-01-01" )],
1044
1034
True ,
1045
1035
Series ([1 ], index = pd .Index (["x" ], name = "key" ), name = "data" ),
1046
1036
),
1047
1037
(
1048
- DataFrame (
1049
- {
1050
- "key" : ["x" , "x" , "x" , "x" , "x" ],
1051
- "data" : [
1052
- dt .date (2019 , 1 , 1 ),
1053
- NaT ,
1054
- dt .date (2019 , 1 , 1 ),
1055
- NaT ,
1056
- dt .date (2019 , 1 , 1 ),
1057
- ],
1058
- }
1059
- ),
1038
+ ["x" , "x" , "x" ],
1039
+ [dt .date (2019 , 1 , 1 ), NaT , dt .date (2019 , 1 , 1 )],
1060
1040
True ,
1061
1041
Series ([1 ], index = pd .Index (["x" ], name = "key" ), name = "data" ),
1062
1042
),
1063
1043
(
1064
- DataFrame (
1065
- {
1066
- "key" : ["x" , "x" , "x" , "y" , "y" ],
1067
- "data" : [
1068
- dt .date (2019 , 1 , 1 ),
1069
- NaT ,
1070
- dt .date (2019 , 1 , 1 ),
1071
- NaT ,
1072
- dt .date (2019 , 1 , 1 ),
1073
- ],
1074
- }
1075
- ),
1044
+ ["x" , "x" , "x" , "y" , "y" ],
1045
+ [dt .date (2019 , 1 , 1 ), NaT , dt .date (2019 , 1 , 1 ), NaT , dt .date (2019 , 1 , 1 )],
1076
1046
False ,
1077
1047
Series ([2 , 2 ], index = pd .Index (["x" , "y" ], name = "key" ), name = "data" ),
1078
1048
),
1079
1049
(
1080
- DataFrame (
1081
- {
1082
- "key" : ["x" , "x" , "x" , "x" , "y" ],
1083
- "data" : [
1084
- dt .date (2019 , 1 , 1 ),
1085
- NaT ,
1086
- dt .date (2019 , 1 , 1 ),
1087
- NaT ,
1088
- dt .date (2019 , 1 , 1 ),
1089
- ],
1090
- }
1091
- ),
1050
+ ["x" , "x" , "x" , "x" , "y" ],
1051
+ [dt .date (2019 , 1 , 1 ), NaT , dt .date (2019 , 1 , 1 ), NaT , dt .date (2019 , 1 , 1 )],
1092
1052
False ,
1093
1053
Series ([2 , 1 ], index = pd .Index (["x" , "y" ], name = "key" ), name = "data" ),
1094
1054
),
1095
1055
],
1096
1056
)
1097
- def test_nunique_with_NaT (data , dropna , expected ):
1057
+ def test_nunique_with_NaT (key , data , dropna , expected ):
1098
1058
# GH 27951
1099
- result = data .groupby (["key" ])["data" ].nunique (dropna = dropna )
1059
+ df = pd .DataFrame ({"key" : key , "data" : data })
1060
+ result = df .groupby (["key" ])["data" ].nunique (dropna = dropna )
1100
1061
tm .assert_series_equal (result , expected )
1101
1062
1102
1063
0 commit comments