@@ -147,25 +147,66 @@ def _get_marker_compat(marker):
147
147
148
148
149
149
def radviz (frame , class_column , ax = None , color = None , colormap = None , ** kwds ):
150
- """RadViz - a multivariate data visualization algorithm
150
+ """
151
+ Plot a multidimensional dataset in 2D.
152
+
153
+ Each Series in the DataFrame is represented as a evenly distributed
154
+ slice on a circle. Each data point is rendered in the circle according to
155
+ the value on each Series. Highly correlated `Series` in the `DataFrame`
156
+ are placed closer on the unit circle.
157
+
158
+ RadViz allow to project a N-dimensional data set into a 2D space where the
159
+ influence of each dimension can be interpreted as a balance between the
160
+ influence of all dimensions.
161
+
162
+ More info available at the `original article
163
+ <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.889>`_
164
+ describing RadViz.
151
165
152
166
Parameters
153
167
----------
154
- frame: DataFrame
155
- class_column: str
156
- Column name containing class names
157
- ax: Matplotlib axis object, optional
158
- color: list or tuple, optional
159
- Colors to use for the different classes
160
- colormap : str or matplotlib colormap object, default None
161
- Colormap to select colors from. If string, load colormap with that name
162
- from matplotlib.
163
- kwds: keywords
164
- Options to pass to matplotlib scatter plotting method
168
+ frame : `DataFrame`
169
+ Pandas object holding the data.
170
+ class_column : str
171
+ Column name containing the name of the data point category.
172
+ ax : :class:`matplotlib.axes.Axes`, optional
173
+ A plot instance to which to add the information.
174
+ color : list[str] or tuple[str], optional
175
+ Assign a color to each category. Example: ['blue', 'green'].
176
+ colormap : str or :class:`matplotlib.colors.Colormap`, default None
177
+ Colormap to select colors from. If string, load colormap with that
178
+ name from matplotlib.
179
+ kwds : optional
180
+ Options to pass to matplotlib scatter plotting method.
165
181
166
182
Returns
167
183
-------
168
- ax: Matplotlib axis object
184
+ axes : :class:`matplotlib.axes.Axes`
185
+
186
+ See Also
187
+ --------
188
+ pandas.plotting.andrews_curves : Plot clustering visualization
189
+
190
+ Examples
191
+ --------
192
+ .. plot::
193
+ :context: close-figs
194
+
195
+ >>> df = pd.DataFrame({
196
+ ... 'SepalLength': [6.5, 7.7, 5.1, 5.8, 7.6, 5.0, 5.4, 4.6,
197
+ ... 6.7, 4.6],
198
+ ... 'SepalWidth': [3.0, 3.8, 3.8, 2.7, 3.0, 2.3, 3.0, 3.2,
199
+ ... 3.3, 3.6],
200
+ ... 'PetalLength': [5.5, 6.7, 1.9, 5.1, 6.6, 3.3, 4.5, 1.4,
201
+ ... 5.7, 1.0],
202
+ ... 'PetalWidth': [1.8, 2.2, 0.4, 1.9, 2.1, 1.0, 1.5, 0.2,
203
+ ... 2.1, 0.2],
204
+ ... 'Category': ['virginica', 'virginica', 'setosa',
205
+ ... 'virginica', 'virginica', 'versicolor',
206
+ ... 'versicolor', 'setosa', 'virginica',
207
+ ... 'setosa']
208
+ ... })
209
+ >>> rad_viz = pd.plotting.radviz(df, 'Category')
169
210
"""
170
211
import matplotlib .pyplot as plt
171
212
import matplotlib .patches as patches
0 commit comments