@@ -7792,6 +7792,8 @@ def groupby(
7792
7792
For finer-tuned control, see hierarchical indexing documentation along
7793
7793
with the related stack/unstack methods.
7794
7794
7795
+ Reference :ref:`the user guide <reshaping.pivot>` for more examples.
7796
+
7795
7797
Examples
7796
7798
--------
7797
7799
>>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two',
@@ -7950,6 +7952,10 @@ def pivot(self, index=None, columns=None, values=None) -> DataFrame:
7950
7952
wide_to_long : Wide panel to long format. Less flexible but more
7951
7953
user-friendly than melt.
7952
7954
7955
+ Notes
7956
+ -----
7957
+ Reference :ref:`the user guide <reshaping.pivot>` for more examples.
7958
+
7953
7959
Examples
7954
7960
--------
7955
7961
>>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo",
@@ -8106,6 +8112,8 @@ def stack(self, level: Level = -1, dropna: bool = True):
8106
8112
vertically on top of each other (in the index of the
8107
8113
dataframe).
8108
8114
8115
+ Reference :ref:`the user guide <reshaping.stacking>` for more examples.
8116
+
8109
8117
Examples
8110
8118
--------
8111
8119
**Single level columns**
@@ -8285,6 +8293,8 @@ def explode(
8285
8293
result in a np.nan for that row. In addition, the ordering of rows in the
8286
8294
output will be non-deterministic when exploding sets.
8287
8295
8296
+ Reference :ref:`the user guide <reshaping.explode>` for more examples.
8297
+
8288
8298
Examples
8289
8299
--------
8290
8300
>>> df = pd.DataFrame({'A': [[0, 1, 2], 'foo', [], [3, 4]],
@@ -8384,6 +8394,10 @@ def unstack(self, level: Level = -1, fill_value=None):
8384
8394
DataFrame.stack : Pivot a level of the column labels (inverse operation
8385
8395
from `unstack`).
8386
8396
8397
+ Notes
8398
+ -----
8399
+ Reference :ref:`the user guide <reshaping.stacking>` for more examples.
8400
+
8387
8401
Examples
8388
8402
--------
8389
8403
>>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'),
0 commit comments