Skip to content

Commit 61ba7bf

Browse files
tuliocasagrandejreback
authored andcommitted
DOC: Improve DataFrame.select_dtypes examples (#19188)
1 parent 083a9d4 commit 61ba7bf

File tree

1 file changed

+20
-19
lines changed

1 file changed

+20
-19
lines changed

pandas/core/frame.py

+20-19
Original file line numberDiff line numberDiff line change
@@ -2417,17 +2417,18 @@ def select_dtypes(self, include=None, exclude=None):
24172417
24182418
Notes
24192419
-----
2420-
* To select all *numeric* types use the numpy dtype ``numpy.number``
2420+
* To select all *numeric* types, use ``np.number`` or ``'number'``
24212421
* To select strings you must use the ``object`` dtype, but note that
24222422
this will return *all* object dtype columns
24232423
* See the `numpy dtype hierarchy
24242424
<http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html>`__
2425-
* To select datetimes, use np.datetime64, 'datetime' or 'datetime64'
2426-
* To select timedeltas, use np.timedelta64, 'timedelta' or
2427-
'timedelta64'
2428-
* To select Pandas categorical dtypes, use 'category'
2429-
* To select Pandas datetimetz dtypes, use 'datetimetz' (new in 0.20.0),
2430-
or a 'datetime64[ns, tz]' string
2425+
* To select datetimes, use ``np.datetime64``, ``'datetime'`` or
2426+
``'datetime64'``
2427+
* To select timedeltas, use ``np.timedelta64``, ``'timedelta'`` or
2428+
``'timedelta64'``
2429+
* To select Pandas categorical dtypes, use ``'category'``
2430+
* To select Pandas datetimetz dtypes, use ``'datetimetz'`` (new in
2431+
0.20.0) or ``'datetime64[ns, tz]'``
24312432
24322433
Examples
24332434
--------
@@ -2436,12 +2437,12 @@ def select_dtypes(self, include=None, exclude=None):
24362437
... 'c': [1.0, 2.0] * 3})
24372438
>>> df
24382439
a b c
2439-
0 0.3962 True 1
2440-
1 0.1459 False 2
2441-
2 0.2623 True 1
2442-
3 0.0764 False 2
2443-
4 -0.9703 True 1
2444-
5 -1.2094 False 2
2440+
0 0.3962 True 1.0
2441+
1 0.1459 False 2.0
2442+
2 0.2623 True 1.0
2443+
3 0.0764 False 2.0
2444+
4 -0.9703 True 1.0
2445+
5 -1.2094 False 2.0
24452446
>>> df.select_dtypes(include='bool')
24462447
c
24472448
0 True
@@ -2452,12 +2453,12 @@ def select_dtypes(self, include=None, exclude=None):
24522453
5 False
24532454
>>> df.select_dtypes(include=['float64'])
24542455
c
2455-
0 1
2456-
1 2
2457-
2 1
2458-
3 2
2459-
4 1
2460-
5 2
2456+
0 1.0
2457+
1 2.0
2458+
2 1.0
2459+
3 2.0
2460+
4 1.0
2461+
5 2.0
24612462
>>> df.select_dtypes(exclude=['floating'])
24622463
b
24632464
0 True

0 commit comments

Comments
 (0)