@@ -2417,17 +2417,18 @@ def select_dtypes(self, include=None, exclude=None):
2417
2417
2418
2418
Notes
2419
2419
-----
2420
- * To select all *numeric* types use the numpy dtype ``numpy. number``
2420
+ * To select all *numeric* types, use ``np.number`` or ``' number' ``
2421
2421
* To select strings you must use the ``object`` dtype, but note that
2422
2422
this will return *all* object dtype columns
2423
2423
* See the `numpy dtype hierarchy
2424
2424
<http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html>`__
2425
- * To select datetimes, use np.datetime64, 'datetime' or 'datetime64'
2426
- * To select timedeltas, use np.timedelta64, 'timedelta' or
2427
- 'timedelta64'
2428
- * To select Pandas categorical dtypes, use 'category'
2429
- * To select Pandas datetimetz dtypes, use 'datetimetz' (new in 0.20.0),
2430
- or a 'datetime64[ns, tz]' string
2425
+ * To select datetimes, use ``np.datetime64``, ``'datetime'`` or
2426
+ ``'datetime64'``
2427
+ * To select timedeltas, use ``np.timedelta64``, ``'timedelta'`` or
2428
+ ``'timedelta64'``
2429
+ * To select Pandas categorical dtypes, use ``'category'``
2430
+ * To select Pandas datetimetz dtypes, use ``'datetimetz'`` (new in
2431
+ 0.20.0) or ``'datetime64[ns, tz]'``
2431
2432
2432
2433
Examples
2433
2434
--------
@@ -2436,12 +2437,12 @@ def select_dtypes(self, include=None, exclude=None):
2436
2437
... 'c': [1.0, 2.0] * 3})
2437
2438
>>> df
2438
2439
a b c
2439
- 0 0.3962 True 1
2440
- 1 0.1459 False 2
2441
- 2 0.2623 True 1
2442
- 3 0.0764 False 2
2443
- 4 -0.9703 True 1
2444
- 5 -1.2094 False 2
2440
+ 0 0.3962 True 1.0
2441
+ 1 0.1459 False 2.0
2442
+ 2 0.2623 True 1.0
2443
+ 3 0.0764 False 2.0
2444
+ 4 -0.9703 True 1.0
2445
+ 5 -1.2094 False 2.0
2445
2446
>>> df.select_dtypes(include='bool')
2446
2447
c
2447
2448
0 True
@@ -2452,12 +2453,12 @@ def select_dtypes(self, include=None, exclude=None):
2452
2453
5 False
2453
2454
>>> df.select_dtypes(include=['float64'])
2454
2455
c
2455
- 0 1
2456
- 1 2
2457
- 2 1
2458
- 3 2
2459
- 4 1
2460
- 5 2
2456
+ 0 1.0
2457
+ 1 2.0
2458
+ 2 1.0
2459
+ 3 2.0
2460
+ 4 1.0
2461
+ 5 2.0
2461
2462
>>> df.select_dtypes(exclude=['floating'])
2462
2463
b
2463
2464
0 True
0 commit comments