@@ -6406,7 +6406,7 @@ def dropna(
6406
6406
6407
6407
thresh : int, optional
6408
6408
Require that many non-NA values. Cannot be combined with how.
6409
- subset : column label or sequence of labels, optional
6409
+ subset : column label or iterable of labels, optional
6410
6410
Labels along other axis to consider, e.g. if you are dropping rows
6411
6411
these would be a list of columns to include.
6412
6412
inplace : bool, default False
@@ -6536,7 +6536,7 @@ def dropna(
6536
6536
@overload
6537
6537
def drop_duplicates (
6538
6538
self ,
6539
- subset : Hashable | Sequence [Hashable ] | None = ...,
6539
+ subset : Hashable | Iterable [Hashable ] | None = ...,
6540
6540
* ,
6541
6541
keep : DropKeep = ...,
6542
6542
inplace : Literal [True ],
@@ -6546,7 +6546,7 @@ def drop_duplicates(
6546
6546
@overload
6547
6547
def drop_duplicates (
6548
6548
self ,
6549
- subset : Hashable | Sequence [Hashable ] | None = ...,
6549
+ subset : Hashable | Iterable [Hashable ] | None = ...,
6550
6550
* ,
6551
6551
keep : DropKeep = ...,
6552
6552
inplace : Literal [False ] = ...,
@@ -6556,7 +6556,7 @@ def drop_duplicates(
6556
6556
@overload
6557
6557
def drop_duplicates (
6558
6558
self ,
6559
- subset : Hashable | Sequence [Hashable ] | None = ...,
6559
+ subset : Hashable | Iterable [Hashable ] | None = ...,
6560
6560
* ,
6561
6561
keep : DropKeep = ...,
6562
6562
inplace : bool = ...,
@@ -6565,7 +6565,7 @@ def drop_duplicates(
6565
6565
6566
6566
def drop_duplicates (
6567
6567
self ,
6568
- subset : Hashable | Sequence [Hashable ] | None = None ,
6568
+ subset : Hashable | Iterable [Hashable ] | None = None ,
6569
6569
* ,
6570
6570
keep : DropKeep = "first" ,
6571
6571
inplace : bool = False ,
@@ -6579,7 +6579,7 @@ def drop_duplicates(
6579
6579
6580
6580
Parameters
6581
6581
----------
6582
- subset : column label or sequence of labels, optional
6582
+ subset : column label or iterable of labels, optional
6583
6583
Only consider certain columns for identifying duplicates, by
6584
6584
default use all of the columns.
6585
6585
keep : {'first', 'last', ``False``}, default 'first'
@@ -6669,7 +6669,7 @@ def drop_duplicates(
6669
6669
6670
6670
def duplicated (
6671
6671
self ,
6672
- subset : Hashable | Sequence [Hashable ] | None = None ,
6672
+ subset : Hashable | Iterable [Hashable ] | None = None ,
6673
6673
keep : DropKeep = "first" ,
6674
6674
) -> Series :
6675
6675
"""
@@ -6679,7 +6679,7 @@ def duplicated(
6679
6679
6680
6680
Parameters
6681
6681
----------
6682
- subset : column label or sequence of labels, optional
6682
+ subset : column label or iterable of labels, optional
6683
6683
Only consider certain columns for identifying duplicates, by
6684
6684
default use all of the columns.
6685
6685
keep : {'first', 'last', False}, default 'first'
@@ -6771,10 +6771,7 @@ def f(vals) -> tuple[np.ndarray, int]:
6771
6771
return labels .astype ("i8" ), len (shape )
6772
6772
6773
6773
if subset is None :
6774
- # https://github.com/pandas-dev/pandas/issues/28770
6775
- # Incompatible types in assignment (expression has type "Index", variable
6776
- # has type "Sequence[Any]")
6777
- subset = self .columns # type: ignore[assignment]
6774
+ subset = self .columns
6778
6775
elif (
6779
6776
not np .iterable (subset )
6780
6777
or isinstance (subset , str )
@@ -6795,7 +6792,7 @@ def f(vals) -> tuple[np.ndarray, int]:
6795
6792
6796
6793
if len (subset ) == 1 and self .columns .is_unique :
6797
6794
# GH#45236 This is faster than get_group_index below
6798
- result = self [subset [ 0 ] ].duplicated (keep )
6795
+ result = self [next ( iter ( subset )) ].duplicated (keep )
6799
6796
result .name = None
6800
6797
else :
6801
6798
vals = (col .values for name , col in self .items () if name in subset )
0 commit comments