@@ -248,8 +248,6 @@ as an attribute:
248
248
- In any of these cases, standard indexing will still work, e.g. ``s['1'] ``, ``s['min'] ``, and ``s['index'] `` will
249
249
access the corresponding element or column.
250
250
251
- - The ``Series/Panel `` accesses are available starting in 0.13.0.
252
-
253
251
If you are using the IPython environment, you may also use tab-completion to
254
252
see these accessible attributes.
255
253
@@ -529,7 +527,6 @@ Out of range slice indexes are handled gracefully just as in Python/Numpy.
529
527
.. ipython :: python
530
528
531
529
# these are allowed in python/numpy.
532
- # Only works in Pandas starting from v0.14.0.
533
530
x = list (' abcdef' )
534
531
x
535
532
x[4 :10 ]
@@ -539,14 +536,8 @@ Out of range slice indexes are handled gracefully just as in Python/Numpy.
539
536
s.iloc[4 :10 ]
540
537
s.iloc[8 :10 ]
541
538
542
- .. note ::
543
-
544
- Prior to v0.14.0, ``iloc `` would not accept out of bounds indexers for
545
- slices, e.g. a value that exceeds the length of the object being indexed.
546
-
547
-
548
- Note that this could result in an empty axis (e.g. an empty DataFrame being
549
- returned)
539
+ Note that using slices that go out of bounds can result in
540
+ an empty axis (e.g. an empty DataFrame being returned)
550
541
551
542
.. ipython :: python
552
543
@@ -745,8 +736,6 @@ Finally, one can also set a seed for ``sample``'s random number generator using
745
736
Setting With Enlargement
746
737
------------------------
747
738
748
- .. versionadded :: 0.13
749
-
750
739
The ``.loc/[] `` operations can perform enlargement when setting a non-existant key for that axis.
751
740
752
741
In the ``Series `` case this is effectively an appending operation
@@ -1020,8 +1009,6 @@ partial setting via ``.loc`` (but on the contents rather than the axis labels)
1020
1009
df2[ df2[1 :4 ] > 0 ] = 3
1021
1010
df2
1022
1011
1023
- .. versionadded :: 0.13
1024
-
1025
1012
Where can also accept ``axis `` and ``level `` parameters to align the input when
1026
1013
performing the ``where ``.
1027
1014
@@ -1064,8 +1051,6 @@ as condition and ``other`` argument.
1064
1051
The :meth: `~pandas.DataFrame.query ` Method (Experimental)
1065
1052
---------------------------------------------------------
1066
1053
1067
- .. versionadded :: 0.13
1068
-
1069
1054
:class: `~pandas.DataFrame ` objects have a :meth: `~pandas.DataFrame.query `
1070
1055
method that allows selection using an expression.
1071
1056
@@ -1506,8 +1491,6 @@ The name, if set, will be shown in the console display:
1506
1491
Setting metadata
1507
1492
~~~~~~~~~~~~~~~~
1508
1493
1509
- .. versionadded :: 0.13.0
1510
-
1511
1494
Indexes are "mostly immutable", but it is possible to set and change their
1512
1495
metadata, like the index ``name `` (or, for ``MultiIndex ``, ``levels `` and
1513
1496
``labels ``).
@@ -1790,7 +1773,7 @@ Evaluation order matters
1790
1773
1791
1774
Furthermore, in chained expressions, the order may determine whether a copy is returned or not.
1792
1775
If an expression will set values on a copy of a slice, then a ``SettingWithCopy ``
1793
- exception will be raised (this raise/warn behavior is new starting in 0.13.0)
1776
+ warning will be issued.
1794
1777
1795
1778
You can control the action of a chained assignment via the option ``mode.chained_assignment ``,
1796
1779
which can take the values ``['raise','warn',None] ``, where showing a warning is the default.
0 commit comments