@@ -346,7 +346,7 @@ class DataFrame(NDFrame):
346
346
1 4 5 6
347
347
2 7 8 9
348
348
349
- See also
349
+ See Also
350
350
--------
351
351
DataFrame.from_records : constructor from tuples, also record arrays
352
352
DataFrame.from_dict : from dicts of Series, arrays, or dicts
@@ -1694,7 +1694,7 @@ def from_csv(cls, path, header=0, sep=',', index_col=0, parse_dates=True,
1694
1694
datetime format based on the first datetime string. If the format
1695
1695
can be inferred, there often will be a large parsing speed-up.
1696
1696
1697
- See also
1697
+ See Also
1698
1698
--------
1699
1699
pandas.read_csv
1700
1700
@@ -5592,7 +5592,7 @@ def pivot(self, index=None, columns=None, values=None):
5592
5592
-------
5593
5593
table : DataFrame
5594
5594
5595
- See also
5595
+ See Also
5596
5596
--------
5597
5597
DataFrame.pivot : pivot without aggregation that can handle
5598
5598
non-numeric data
@@ -5797,7 +5797,7 @@ def unstack(self, level=-1, fill_value=None):
5797
5797
5798
5798
.. versionadded:: 0.18.0
5799
5799
5800
- See also
5800
+ See Also
5801
5801
--------
5802
5802
DataFrame.pivot : Pivot a table based on column values.
5803
5803
DataFrame.stack : Pivot a level of the column labels (inverse operation
@@ -5867,7 +5867,7 @@ def unstack(self, level=-1, fill_value=None):
5867
5867
col_level : int or string, optional
5868
5868
If columns are a MultiIndex then use this level to melt.
5869
5869
5870
- See also
5870
+ See Also
5871
5871
--------
5872
5872
%(other)s
5873
5873
pivot_table
@@ -6108,7 +6108,7 @@ def _gotitem(self,
6108
6108
3 NaN
6109
6109
dtype: float64
6110
6110
6111
- See also
6111
+ See Also
6112
6112
--------
6113
6113
DataFrame.apply : Perform any type of operations.
6114
6114
DataFrame.transform : Perform transformation type operations.
@@ -6242,7 +6242,7 @@ def apply(self, func, axis=0, broadcast=None, raw=False, reduce=None,
6242
6242
side-effects, as they will take effect twice for the first
6243
6243
column/row.
6244
6244
6245
- See also
6245
+ See Also
6246
6246
--------
6247
6247
DataFrame.applymap: For elementwise operations
6248
6248
DataFrame.aggregate: only perform aggregating type operations
@@ -6351,7 +6351,7 @@ def applymap(self, func):
6351
6351
DataFrame
6352
6352
Transformed DataFrame.
6353
6353
6354
- See also
6354
+ See Also
6355
6355
--------
6356
6356
DataFrame.apply : Apply a function along input axis of DataFrame
6357
6357
@@ -6434,7 +6434,7 @@ def append(self, other, ignore_index=False,
6434
6434
those rows to a list and then concatenate the list with the original
6435
6435
DataFrame all at once.
6436
6436
6437
- See also
6437
+ See Also
6438
6438
--------
6439
6439
pandas.concat : General function to concatenate DataFrame, Series
6440
6440
or Panel objects
0 commit comments