|
| 1 | +""" |
| 2 | +ipython analogue: |
| 3 | +
|
| 4 | +tr = TimeIntsToPydatetime() |
| 5 | +mi = pd.MultiIndex.from_product( |
| 6 | + tr.params[:-1] + ([str(x) for x in tr.params[-1]],) |
| 7 | +) |
| 8 | +df = pd.DataFrame(np.nan, index=mi, columns=["mean", "stdev"]) |
| 9 | +for box in tr.params[0]: |
| 10 | + for size in tr.params[1]: |
| 11 | + for tz in tr.params[2]: |
| 12 | + tr.setup(box, size, tz) |
| 13 | + key = (box, size, str(tz)) |
| 14 | + print(key) |
| 15 | + val = %timeit -o tr.time_ints_to_pydatetime(box, size, tz) |
| 16 | + df.loc[key] = (val.average, val.stdev) |
| 17 | +""" |
| 18 | +from datetime import timedelta, timezone |
| 19 | + |
| 20 | +from dateutil.tz import gettz, tzlocal |
| 21 | +import numpy as np |
| 22 | +import pytz |
| 23 | + |
| 24 | +from pandas._libs.tslib import ints_to_pydatetime |
| 25 | + |
| 26 | +_tzs = [ |
| 27 | + None, |
| 28 | + timezone.utc, |
| 29 | + timezone(timedelta(minutes=60)), |
| 30 | + pytz.timezone("US/Pacific"), |
| 31 | + gettz("Asia/Tokyo"), |
| 32 | + tzlocal(), |
| 33 | +] |
| 34 | +_sizes = [0, 1, 100, 10 ** 4, 10 ** 6] |
| 35 | + |
| 36 | + |
| 37 | +class TimeIntsToPydatetime: |
| 38 | + params = ( |
| 39 | + ["time", "date", "datetime", "timestamp"], |
| 40 | + _sizes, |
| 41 | + _tzs, |
| 42 | + ) |
| 43 | + param_names = ["box", "size", "tz"] |
| 44 | + # TODO: fold? freq? |
| 45 | + |
| 46 | + def setup(self, box, size, tz): |
| 47 | + arr = np.random.randint(0, 10, size=size, dtype="i8") |
| 48 | + self.i8data = arr |
| 49 | + |
| 50 | + def time_ints_to_pydatetime(self, box, size, tz): |
| 51 | + if box == "date": |
| 52 | + # ints_to_pydatetime does not allow non-None tz with date; |
| 53 | + # this will mean doing some duplicate benchmarks |
| 54 | + tz = None |
| 55 | + ints_to_pydatetime(self.i8data, tz, box=box) |
0 commit comments