@@ -5037,8 +5037,7 @@ def pipe(self, func, *args, **kwargs):
5037
5037
`agg` is an alias for `aggregate`. Use the alias.
5038
5038
5039
5039
A passed user-defined-function will be passed a Series for evaluation.
5040
- {examples}
5041
- """
5040
+ {examples}"""
5042
5041
)
5043
5042
5044
5043
# ----------------------------------------------------------------------
@@ -10992,8 +10991,7 @@ def stat_func(
10992
10991
10993
10992
Returns
10994
10993
-------
10995
- {name1} or {name2} (if level specified)\n
10996
- """
10994
+ {name1} or {name2} (if level specified)\n """
10997
10995
nv .validate_stat_ddof_func (tuple (), kwargs , fname = name )
10998
10996
if skipna is None :
10999
10997
skipna = True
@@ -11062,8 +11060,7 @@ def cum_func(self, axis=None, skipna=True, *args, **kwargs):
11062
11060
{name2}.cumsum : Return cumulative sum over {name2} axis.
11063
11061
{name2}.cumprod : Return cumulative product over {name2} axis.
11064
11062
11065
- {examples}
11066
- """
11063
+ {examples}"""
11067
11064
skipna = nv .validate_cum_func_with_skipna (skipna , args , kwargs , name )
11068
11065
if axis is None :
11069
11066
axis = self ._stat_axis_number
@@ -11112,11 +11109,11 @@ def _make_logical_function(
11112
11109
)
11113
11110
def logical_func (self , axis = 0 , bool_only = None , skipna = True , level = None , ** kwargs ):
11114
11111
"""
11115
- {desc}
11112
+ {desc}
11116
11113
11117
- Parameters
11118
- ----------
11119
- axis : {{0 or 'index', 1 or 'columns', None}}, default 0
11114
+ Parameters
11115
+ ----------
11116
+ axis : {{0 or 'index', 1 or 'columns', None}}, default 0
11120
11117
Indicate which axis or axes should be reduced.
11121
11118
11122
11119
* 0 / 'index' : reduce the index, return a Series whose index is the
@@ -11125,30 +11122,29 @@ def logical_func(self, axis=0, bool_only=None, skipna=True, level=None, **kwargs
11125
11122
original index.
11126
11123
* None : reduce all axes, return a scalar.
11127
11124
11128
- bool_only : bool, default None
11125
+ bool_only : bool, default None
11129
11126
Include only boolean columns. If None, will attempt to use everything,
11130
11127
then use only boolean data. Not implemented for Series.
11131
- skipna : bool, default True
11128
+ skipna : bool, default True
11132
11129
Exclude NA/null values. If the entire row/column is NA and skipna is
11133
11130
True, then the result will be {empty_value}, as for an empty row/column.
11134
11131
If skipna is False, then NA are treated as True, because these are not
11135
11132
equal to zero.
11136
- level : int or level name, default None
11133
+ level : int or level name, default None
11137
11134
If the axis is a MultiIndex (hierarchical), count along a
11138
11135
particular level, collapsing into a {name1}.
11139
- **kwargs : any, default None
11136
+ **kwargs : any, default None
11140
11137
Additional keywords have no effect but might be accepted for
11141
11138
compatibility with NumPy.
11142
11139
11143
- Returns
11144
- -------
11145
- {name1} or {name2}
11140
+ Returns
11141
+ -------
11142
+ {name1} or {name2}
11146
11143
If level is specified, then, {name2} is returned; otherwise, {name1}
11147
11144
is returned.
11148
11145
11149
- {see_also}
11150
- {examples}
11151
- """
11146
+ {see_also}
11147
+ {examples}"""
11152
11148
nv .validate_logical_func (tuple (), kwargs , fname = name )
11153
11149
if level is not None :
11154
11150
if bool_only is not None :
0 commit comments