Skip to content

Commit 4a05601

Browse files
authored
CLN: make tm.N, tm.K private (#32138)
1 parent 7d37ab8 commit 4a05601

File tree

2 files changed

+16
-20
lines changed

2 files changed

+16
-20
lines changed

doc/source/user_guide/reshaping.rst

+2-6
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,6 @@ Reshaping by pivoting DataFrame objects
1717
:suppress:
1818
1919
import pandas._testing as tm
20-
tm.N = 3
2120
2221
def unpivot(frame):
2322
N, K = frame.shape
@@ -27,7 +26,7 @@ Reshaping by pivoting DataFrame objects
2726
columns = ['date', 'variable', 'value']
2827
return pd.DataFrame(data, columns=columns)
2928
30-
df = unpivot(tm.makeTimeDataFrame())
29+
df = unpivot(tm.makeTimeDataFrame(3))
3130
3231
Data is often stored in so-called "stacked" or "record" format:
3332

@@ -42,9 +41,6 @@ For the curious here is how the above ``DataFrame`` was created:
4241
4342
import pandas._testing as tm
4443
45-
tm.N = 3
46-
47-
4844
def unpivot(frame):
4945
N, K = frame.shape
5046
data = {'value': frame.to_numpy().ravel('F'),
@@ -53,7 +49,7 @@ For the curious here is how the above ``DataFrame`` was created:
5349
return pd.DataFrame(data, columns=['date', 'variable', 'value'])
5450
5551
56-
df = unpivot(tm.makeTimeDataFrame())
52+
df = unpivot(tm.makeTimeDataFrame(3))
5753
5854
To select out everything for variable ``A`` we could do:
5955

pandas/_testing.py

+14-14
Original file line numberDiff line numberDiff line change
@@ -69,8 +69,8 @@
6969

7070
lzma = _import_lzma()
7171

72-
N = 30
73-
K = 4
72+
_N = 30
73+
_K = 4
7474
_RAISE_NETWORK_ERROR_DEFAULT = False
7575

7676
# set testing_mode
@@ -1790,45 +1790,45 @@ def all_timeseries_index_generator(k=10):
17901790

17911791
# make series
17921792
def makeFloatSeries(name=None):
1793-
index = makeStringIndex(N)
1794-
return Series(randn(N), index=index, name=name)
1793+
index = makeStringIndex(_N)
1794+
return Series(randn(_N), index=index, name=name)
17951795

17961796

17971797
def makeStringSeries(name=None):
1798-
index = makeStringIndex(N)
1799-
return Series(randn(N), index=index, name=name)
1798+
index = makeStringIndex(_N)
1799+
return Series(randn(_N), index=index, name=name)
18001800

18011801

18021802
def makeObjectSeries(name=None):
1803-
data = makeStringIndex(N)
1803+
data = makeStringIndex(_N)
18041804
data = Index(data, dtype=object)
1805-
index = makeStringIndex(N)
1805+
index = makeStringIndex(_N)
18061806
return Series(data, index=index, name=name)
18071807

18081808

18091809
def getSeriesData():
1810-
index = makeStringIndex(N)
1811-
return {c: Series(randn(N), index=index) for c in getCols(K)}
1810+
index = makeStringIndex(_N)
1811+
return {c: Series(randn(_N), index=index) for c in getCols(_K)}
18121812

18131813

18141814
def makeTimeSeries(nper=None, freq="B", name=None):
18151815
if nper is None:
1816-
nper = N
1816+
nper = _N
18171817
return Series(randn(nper), index=makeDateIndex(nper, freq=freq), name=name)
18181818

18191819

18201820
def makePeriodSeries(nper=None, name=None):
18211821
if nper is None:
1822-
nper = N
1822+
nper = _N
18231823
return Series(randn(nper), index=makePeriodIndex(nper), name=name)
18241824

18251825

18261826
def getTimeSeriesData(nper=None, freq="B"):
1827-
return {c: makeTimeSeries(nper, freq) for c in getCols(K)}
1827+
return {c: makeTimeSeries(nper, freq) for c in getCols(_K)}
18281828

18291829

18301830
def getPeriodData(nper=None):
1831-
return {c: makePeriodSeries(nper) for c in getCols(K)}
1831+
return {c: makePeriodSeries(nper) for c in getCols(_K)}
18321832

18331833

18341834
# make frame

0 commit comments

Comments
 (0)