You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: doc/source/install.rst
+1-1Lines changed: 1 addition & 1 deletion
Original file line number
Diff line number
Diff line change
@@ -257,7 +257,7 @@ Optional Dependencies
257
257
* `SciPy <http://www.scipy.org>`__: miscellaneous statistical functions, Version 0.18.1 or higher
258
258
* `xarray <http://xarray.pydata.org>`__: pandas like handling for > 2 dims, needed for converting Panels to xarray objects. Version 0.7.0 or higher is recommended.
259
259
* `PyTables <http://www.pytables.org>`__: necessary for HDF5-based storage, Version 3.4.2 or higher
260
-
* `pyarrow <http://arrow.apache.org/docs/python/>`__ (>= 0.7.0): necessary for feather-based storage.
260
+
* `pyarrow <http://arrow.apache.org/docs/python/>`__ (>= 0.9.0): necessary for feather-based storage.
261
261
* `Apache Parquet <https://parquet.apache.org/>`__, either `pyarrow <http://arrow.apache.org/docs/python/>`__ (>= 0.7.0) or `fastparquet <https://fastparquet.readthedocs.io/en/latest>`__ (>= 0.2.1) for parquet-based storage. The `snappy <https://pypi.org/project/python-snappy>`__ and `brotli <https://pypi.org/project/brotlipy>`__ are available for compression support.
262
262
* `SQLAlchemy <http://www.sqlalchemy.org>`__: for SQL database support. Version 0.8.1 or higher recommended. Besides SQLAlchemy, you also need a database specific driver. You can find an overview of supported drivers for each SQL dialect in the `SQLAlchemy docs <http://docs.sqlalchemy.org/en/latest/dialects/index.html>`__. Some common drivers are:
Copy file name to clipboardExpand all lines: doc/source/whatsnew/v0.24.0.rst
+9-4Lines changed: 9 additions & 4 deletions
Original file line number
Diff line number
Diff line change
@@ -438,7 +438,7 @@ Pandas 0.24.0 includes a number of API breaking changes.
438
438
Dependencies have increased minimum versions
439
439
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
440
440
441
-
We have updated our minimum supported versions of dependencies (:issue:`21242`, :issue:`18742`, :issue:`23774`).
441
+
We have updated our minimum supported versions of dependencies (:issue:`21242`, :issue:`18742`, :issue:`23774`, :issue:`24767`).
442
442
If installed, we now require:
443
443
444
444
+-----------------+-----------------+----------+
@@ -456,7 +456,7 @@ If installed, we now require:
456
456
+-----------------+-----------------+----------+
457
457
| pandas-gbq | 0.8.0 ||
458
458
+-----------------+-----------------+----------+
459
-
| pyarrow | 0.7.0 ||
459
+
| pyarrow | 0.9.0 ||
460
460
+-----------------+-----------------+----------+
461
461
| pytables | 3.4.2 ||
462
462
+-----------------+-----------------+----------+
@@ -1159,6 +1159,7 @@ Other API Changes
1159
1159
- :meth:`CategoricalIndex.reindex` now raises a ``ValueError`` if the target index is non-unique and not equal to the current index. It previously only raised if the target index was not of a categorical dtype (:issue:`23963`).
1160
1160
- :func:`Series.to_list` and :func:`Index.to_list` are now aliases of ``Series.tolist`` respectively ``Index.tolist`` (:issue:`8826`)
1161
1161
- The result of ``SparseSeries.unstack`` is now a :class:`DataFrame` with sparse values, rather than a :class:`SparseDataFrame` (:issue:`24372`).
1162
+
- :class:`DatetimeIndex` and :class:`TimedeltaIndex` no longer ignore the dtype precision. Passing a non-nanosecond resolution dtype will raise a ``ValueError`` (:issue:`24753`)
1162
1163
1163
1164
1164
1165
.. _whatsnew_0240.api.extension:
@@ -1259,6 +1260,7 @@ Deprecations
1259
1260
- :meth:`Series.nonzero` is deprecated and will be removed in a future version (:issue:`18262`)
1260
1261
- Passing an integer to :meth:`Series.fillna` and :meth:`DataFrame.fillna` with ``timedelta64[ns]`` dtypes is deprecated, will raise ``TypeError`` in a future version. Use ``obj.fillna(pd.Timedelta(...))`` instead (:issue:`24694`)
1261
1262
- ``Series.cat.categorical``, ``Series.cat.name`` and ``Sersies.cat.index`` have been deprecated. Use the attributes on ``Series.cat`` or ``Series`` directly. (:issue:`24751`).
1263
+
- Passing a dtype without a precision like ``np.dtype('datetime64')`` or ``timedelta64`` to :class:`Index`, :class:`DatetimeIndex` and :class:`TimedeltaIndex` is now deprecated. Use the nanosecond-precision dtype instead (:issue:`24753`).
- Bug in :meth:`DatetimeIndex.astype`, :meth:`PeriodIndex.astype` and :meth:`TimedeltaIndex.astype` ignoring the sign of the ``dtype`` for unsigned integer dtypes (:issue:`24405`).
1549
1551
- Fixed bug in :meth:`Series.max` with ``datetime64[ns]``-dtype failing to return ``NaT`` when nulls are present and ``skipna=False`` is passed (:issue:`24265`)
1550
1552
- Bug in :func:`to_datetime` where arrays of ``datetime`` objects containing both timezone-aware and timezone-naive ``datetimes`` would fail to raise ``ValueError`` (:issue:`24569`)
1553
+
- Bug in :func:`to_datetime` with invalid datetime format doesn't coerce input to ``NaT`` even if ``errors='coerce'`` (:issue:`24763`)
1551
1554
1552
1555
Timedelta
1553
1556
^^^^^^^^^
@@ -1689,8 +1692,8 @@ Missing
1689
1692
- Bug in :func:`Series.hasnans` that could be incorrectly cached and return incorrect answers if null elements are introduced after an initial call (:issue:`19700`)
1690
1693
- :func:`Series.isin` now treats all NaN-floats as equal also for ``np.object``-dtype. This behavior is consistent with the behavior for float64 (:issue:`22119`)
1691
1694
- :func:`unique` no longer mangles NaN-floats and the ``NaT``-object for ``np.object``-dtype, i.e. ``NaT`` is no longer coerced to a NaN-value and is treated as a different entity. (:issue:`22295`)
1692
-
- :func:`DataFrame` and :func:`Series` now properly handle numpy masked arrays with hardened masks. Previously, constructing a DataFrame or Series from a masked array with a hard mask would create a pandas object containing the underlying value, rather than the expected NaN. (:issue:`24574`)
1693
-
1695
+
- :class:`DataFrame` and :class:`Series` now properly handle numpy masked arrays with hardened masks. Previously, constructing a DataFrame or Series from a masked array with a hard mask would create a pandas object containing the underlying value, rather than the expected NaN. (:issue:`24574`)
1696
+
- Bug in :class:`DataFrame` constructor where ``dtype`` argument was not honored when handling numpy masked record arrays. (:issue:`24874`)
1694
1697
1695
1698
MultiIndex
1696
1699
^^^^^^^^^^
@@ -1705,6 +1708,7 @@ I/O
1705
1708
^^^
1706
1709
1707
1710
- Bug in :func:`read_csv` in which a column specified with ``CategoricalDtype`` of boolean categories was not being correctly coerced from string values to booleans (:issue:`20498`)
1711
+
- Bug in :func:`read_csv` in which unicode column names were not being properly recognized with Python 2.x (:issue:`13253`)
1708
1712
- Bug in :meth:`DataFrame.to_sql` when writing timezone aware data (``datetime64[ns, tz]`` dtype) would raise a ``TypeError`` (:issue:`9086`)
1709
1713
- Bug in :meth:`DataFrame.to_sql` where a naive :class:`DatetimeIndex` would be written as ``TIMESTAMP WITH TIMEZONE`` type in supported databases, e.g. PostgreSQL (:issue:`23510`)
1710
1714
- Bug in :meth:`read_excel()` when ``parse_cols`` is specified with an empty dataset (:issue:`9208`)
@@ -1782,6 +1786,7 @@ Groupby/Resample/Rolling
1782
1786
- Bug in :meth:`DataFrame.groupby` did not respect the ``observed`` argument when selecting a column and instead always used ``observed=False`` (:issue:`23970`)
1783
1787
- Bug in :func:`pandas.core.groupby.SeriesGroupBy.pct_change` or :func:`pandas.core.groupby.DataFrameGroupBy.pct_change` would previously work across groups when calculating the percent change, where it now correctly works per group (:issue:`21200`, :issue:`21235`).
1784
1788
- Bug preventing hash table creation with very large number (2^32) of rows (:issue:`22805`)
1789
+
- Bug in groupby when grouping on categorical causes ``ValueError`` and incorrect grouping if ``observed=True`` and ``nan`` is present in categorical column (:issue:`24740`, :issue:`21151`).
0 commit comments