27
27
from pandas .compat import pa_version_under10p1
28
28
29
29
from pandas .core .dtypes .common import (
30
- is_float_dtype ,
31
30
is_sequence ,
32
- is_signed_integer_dtype ,
33
31
is_string_dtype ,
34
- is_unsigned_integer_dtype ,
35
- pandas_dtype ,
36
32
)
37
33
38
34
import pandas as pd
46
42
RangeIndex ,
47
43
Series ,
48
44
bdate_range ,
45
+ date_range ,
46
+ period_range ,
49
47
timedelta_range ,
50
48
)
51
49
from pandas ._testing ._io import (
111
109
NpDtype ,
112
110
)
113
111
114
- from pandas import PeriodIndex
115
112
from pandas .core .arrays import ArrowExtensionArray
116
113
117
114
_N = 30
@@ -351,38 +348,6 @@ def getCols(k) -> str:
351
348
return string .ascii_uppercase [:k ]
352
349
353
350
354
- def makeNumericIndex (k : int = 10 , * , name = None , dtype : Dtype | None ) -> Index :
355
- dtype = pandas_dtype (dtype )
356
- assert isinstance (dtype , np .dtype )
357
-
358
- if dtype .kind in "iu" :
359
- values = np .arange (k , dtype = dtype )
360
- if is_unsigned_integer_dtype (dtype ):
361
- values += 2 ** (dtype .itemsize * 8 - 1 )
362
- elif dtype .kind == "f" :
363
- values = np .random .default_rng (2 ).random (k ) - np .random .default_rng (2 ).random (1 )
364
- values .sort ()
365
- values = values * (10 ** np .random .default_rng (2 ).integers (0 , 9 ))
366
- else :
367
- raise NotImplementedError (f"wrong dtype { dtype } " )
368
-
369
- return Index (values , dtype = dtype , name = name )
370
-
371
-
372
- def makeIntIndex (k : int = 10 , * , name = None , dtype : Dtype = "int64" ) -> Index :
373
- dtype = pandas_dtype (dtype )
374
- if not is_signed_integer_dtype (dtype ):
375
- raise TypeError (f"Wrong dtype { dtype } " )
376
- return makeNumericIndex (k , name = name , dtype = dtype )
377
-
378
-
379
- def makeFloatIndex (k : int = 10 , * , name = None , dtype : Dtype = "float64" ) -> Index :
380
- dtype = pandas_dtype (dtype )
381
- if not is_float_dtype (dtype ):
382
- raise TypeError (f"Wrong dtype { dtype } " )
383
- return makeNumericIndex (k , name = name , dtype = dtype )
384
-
385
-
386
351
def makeDateIndex (
387
352
k : int = 10 , freq : Frequency = "B" , name = None , ** kwargs
388
353
) -> DatetimeIndex :
@@ -391,12 +356,6 @@ def makeDateIndex(
391
356
return DatetimeIndex (dr , name = name , ** kwargs )
392
357
393
358
394
- def makePeriodIndex (k : int = 10 , name = None , ** kwargs ) -> PeriodIndex :
395
- dt = datetime (2000 , 1 , 1 )
396
- pi = pd .period_range (start = dt , periods = k , freq = "D" , name = name , ** kwargs )
397
- return pi
398
-
399
-
400
359
def makeObjectSeries (name = None ) -> Series :
401
360
data = [f"foo_{ i } " for i in range (_N )]
402
361
index = Index ([f"bar_{ i } " for i in range (_N )])
@@ -487,12 +446,12 @@ def makeCustomIndex(
487
446
488
447
# specific 1D index type requested?
489
448
idx_func_dict : dict [str , Callable [..., Index ]] = {
490
- "i" : makeIntIndex ,
491
- "f" : makeFloatIndex ,
449
+ "i" : lambda n : Index ( np . arange ( n ), dtype = np . int64 ) ,
450
+ "f" : lambda n : Index ( np . arange ( n ), dtype = np . float64 ) ,
492
451
"s" : lambda n : Index ([f"{ i } _{ chr (i )} " for i in range (97 , 97 + n )]),
493
- "dt" : makeDateIndex ,
452
+ "dt" : lambda n : date_range ( "2020-01-01" , periods = n ) ,
494
453
"td" : lambda n : timedelta_range ("1 day" , periods = n ),
495
- "p" : makePeriodIndex ,
454
+ "p" : lambda n : period_range ( "2020-01-01" , periods = n , freq = "D" ) ,
496
455
}
497
456
idx_func = idx_func_dict .get (idx_type )
498
457
if idx_func :
@@ -975,11 +934,7 @@ def shares_memory(left, right) -> bool:
975
934
"makeCustomIndex" ,
976
935
"makeDataFrame" ,
977
936
"makeDateIndex" ,
978
- "makeFloatIndex" ,
979
- "makeIntIndex" ,
980
- "makeNumericIndex" ,
981
937
"makeObjectSeries" ,
982
- "makePeriodIndex" ,
983
938
"makeTimeDataFrame" ,
984
939
"makeTimeSeries" ,
985
940
"maybe_produces_warning" ,
0 commit comments