@@ -250,7 +250,7 @@ alias parsing is case sensitive.
250
250
.. _timeseries.daterange :
251
251
252
252
Generating date ranges (date_range)
253
- ----------------------------------
253
+ -----------------------------------
254
254
255
255
The ``date_range `` class utilizes these offsets (and any ones that we might add)
256
256
to generate fixed-frequency date ranges:
@@ -260,9 +260,9 @@ to generate fixed-frequency date ranges:
260
260
start = datetime(2009 , 1 , 1 )
261
261
end = datetime(2010 , 1 , 1 )
262
262
263
- rng = date_range(start, end, offset = BDay())
263
+ rng = date_range(start, end, freq = BDay())
264
264
rng
265
- date_range(start, end, offset = BMonthEnd())
265
+ date_range(start, end, freq = BMonthEnd())
266
266
267
267
**Business day frequency ** is the default for ``date_range ``. You can also
268
268
strictly generate a ``date_range `` of a certain length by providing either a
@@ -277,7 +277,7 @@ The start and end dates are strictly inclusive. So it will not generate any
277
277
dates outside of those dates if specified.
278
278
279
279
date_range is a valid Index
280
- ~~~~~~~~~~~~~~~~~~~~~~~~~~
280
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
281
281
282
282
One of the main uses for ``date_range `` is as an index for pandas objects. When
283
283
working with a lot of time series data, there are several reasons to use
@@ -295,7 +295,7 @@ slicing, etc.
295
295
296
296
.. ipython :: python
297
297
298
- rng = date_range(start, end, offset = BMonthEnd())
298
+ rng = date_range(start, end, freq = BMonthEnd())
299
299
ts = Series(randn(len (rng)), index = rng)
300
300
ts.index
301
301
ts[:5 ].index
@@ -339,8 +339,8 @@ rule <timeseries.timerule>`:
339
339
340
340
.. ipython :: python
341
341
342
- ts.shift(5 , offset = datetools.bday)
343
- ts.shift(5 , offset = ' EOM' )
342
+ ts.shift(5 , freq = datetools.bday)
343
+ ts.shift(5 , freq = ' EOM' )
344
344
345
345
Frequency conversion
346
346
~~~~~~~~~~~~~~~~~~~~
@@ -351,7 +351,7 @@ generates a ``date_range`` and calls ``reindex``.
351
351
352
352
.. ipython :: python
353
353
354
- dr = date_range(' 1/1/2010' , periods = 3 , offset = 3 * datetools.bday)
354
+ dr = date_range(' 1/1/2010' , periods = 3 , freq = 3 * datetools.bday)
355
355
ts = Series(randn(3 ), index = dr)
356
356
ts
357
357
ts.asfreq(BDay())
@@ -377,9 +377,9 @@ view) application of GroupBy. Carry out the following steps:
377
377
378
378
.. code-block :: python
379
379
380
- dr1hour = date_range(start, end, offset = Hour())
381
- dr5day = date_range(start, end, offset = 5 * datetools.day)
382
- dr10day = date_range(start, end, offset = 10 * datetools.day)
380
+ dr1hour = date_range(start, end, freq = Hour())
381
+ dr5day = date_range(start, end, freq = 5 * datetools.day)
382
+ dr10day = date_range(start, end, freq = 10 * datetools.day)
383
383
384
384
385
385
2. Use the ``asof `` function ("as of") of the date_range to do a groupby
@@ -396,11 +396,11 @@ Here is a fully-worked example:
396
396
397
397
# some minutely data
398
398
minutely = date_range(' 1/3/2000 00:00:00' , ' 1/3/2000 12:00:00' ,
399
- offset = datetools.Minute())
399
+ freq = datetools.Minute())
400
400
ts = Series(randn(len (minutely)), index = minutely)
401
401
ts.index
402
402
403
- hourly = date_range(' 1/3/2000' , ' 1/4/2000' , offset = datetools.Hour())
403
+ hourly = date_range(' 1/3/2000' , ' 1/4/2000' , freq = datetools.Hour())
404
404
405
405
grouped = ts.groupby(hourly.asof)
406
406
grouped.mean()
0 commit comments