@@ -505,11 +505,13 @@ Enhancements
505
505
- :meth:`~pandas.io.json.json_normalize` is a new method to allow you to create a flat table
506
506
from semi-structured JSON data. See :ref:`the docs<io.json_normalize>` (:issue:`1067`)
507
507
508
-
509
508
- Added PySide support for the qtpandas DataFrameModel and DataFrameWidget.
510
509
510
+ - Python csv parser now supports usecols (:issue:`4335`)
511
+
511
512
- DataFrame has a new ``interpolate`` method, similar to Series (:issue:`4434`, :issue:`1892`)
512
513
514
+
513
515
.. ipython:: python
514
516
515
517
df = DataFrame({'A': [1, 2.1, np.nan, 4.7, 5.6, 6.8],
@@ -654,7 +656,7 @@ Experimental
654
656
against extremely large datasets. :ref:`See the docs <io.bigquery>`
655
657
656
658
.. code-block:: python
657
-
659
+
658
660
from pandas.io import gbq
659
661
660
662
# A query to select the average monthly temperatures in the
@@ -665,8 +667,8 @@ Experimental
665
667
query = """SELECT station_number as STATION,
666
668
month as MONTH, AVG(mean_temp) as MEAN_TEMP
667
669
FROM publicdata:samples.gsod
668
- WHERE YEAR = 2000
669
- GROUP BY STATION, MONTH
670
+ WHERE YEAR = 2000
671
+ GROUP BY STATION, MONTH
670
672
ORDER BY STATION, MONTH ASC"""
671
673
672
674
# Fetch the result set for this query
@@ -675,7 +677,7 @@ Experimental
675
677
# To find this, see your dashboard:
676
678
# https://code.google.com/apis/console/b/0/?noredirect
677
679
projectid = xxxxxxxxx;
678
-
680
+
679
681
df = gbq.read_gbq(query, project_id = projectid)
680
682
681
683
# Use pandas to process and reshape the dataset
@@ -686,9 +688,9 @@ Experimental
686
688
687
689
The resulting dataframe is::
688
690
689
- > df3
691
+ > df3
690
692
Min Tem Mean Temp Max Temp
691
- MONTH
693
+ MONTH
692
694
1 -53.336667 39.827892 89.770968
693
695
2 -49.837500 43.685219 93.437932
694
696
3 -77.926087 48.708355 96.099998
0 commit comments