Skip to content

Commit 3ed51c2

Browse files
alanyeejreback
authored andcommitted
DOC: Additions/updates to documentation (#17150)
1 parent 611d296 commit 3ed51c2

File tree

2 files changed

+37
-37
lines changed

2 files changed

+37
-37
lines changed

README.md

+29-29
Original file line numberDiff line numberDiff line change
@@ -53,15 +53,15 @@
5353
<tr>
5454
<td>Conda</td>
5555
<td>
56-
<a href="http://pandas.pydata.org">
56+
<a href="https://pandas.pydata.org">
5757
<img src="http://pubbadges.s3-website-us-east-1.amazonaws.com/pkgs-downloads-pandas.png" alt="conda default downloads" />
5858
</a>
5959
</td>
6060
</tr>
6161
<tr>
6262
<td>Conda-forge</td>
6363
<td>
64-
<a href="http://pandas.pydata.org">
64+
<a href="https://pandas.pydata.org">
6565
<img src="https://anaconda.org/conda-forge/pandas/badges/downloads.svg" alt="conda-forge downloads" />
6666
</a>
6767
</td>
@@ -123,31 +123,31 @@ Here are just a few of the things that pandas does well:
123123
moving window linear regressions, date shifting and lagging, etc.
124124

125125

126-
[missing-data]: http://pandas.pydata.org/pandas-docs/stable/missing_data.html#working-with-missing-data
127-
[insertion-deletion]: http://pandas.pydata.org/pandas-docs/stable/dsintro.html#column-selection-addition-deletion
128-
[alignment]: http://pandas.pydata.org/pandas-docs/stable/dsintro.html?highlight=alignment#intro-to-data-structures
129-
[groupby]: http://pandas.pydata.org/pandas-docs/stable/groupby.html#group-by-split-apply-combine
130-
[conversion]: http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe
131-
[slicing]: http://pandas.pydata.org/pandas-docs/stable/indexing.html#slicing-ranges
132-
[fancy-indexing]: http://pandas.pydata.org/pandas-docs/stable/indexing.html#advanced-indexing-with-ix
133-
[subsetting]: http://pandas.pydata.org/pandas-docs/stable/indexing.html#boolean-indexing
134-
[merging]: http://pandas.pydata.org/pandas-docs/stable/merging.html#database-style-dataframe-joining-merging
135-
[joining]: http://pandas.pydata.org/pandas-docs/stable/merging.html#joining-on-index
136-
[reshape]: http://pandas.pydata.org/pandas-docs/stable/reshaping.html#reshaping-and-pivot-tables
137-
[pivot-table]: http://pandas.pydata.org/pandas-docs/stable/reshaping.html#pivot-tables-and-cross-tabulations
138-
[mi]: http://pandas.pydata.org/pandas-docs/stable/indexing.html#hierarchical-indexing-multiindex
139-
[flat-files]: http://pandas.pydata.org/pandas-docs/stable/io.html#csv-text-files
140-
[excel]: http://pandas.pydata.org/pandas-docs/stable/io.html#excel-files
141-
[db]: http://pandas.pydata.org/pandas-docs/stable/io.html#sql-queries
142-
[hdfstore]: http://pandas.pydata.org/pandas-docs/stable/io.html#hdf5-pytables
143-
[timeseries]: http://pandas.pydata.org/pandas-docs/stable/timeseries.html#time-series-date-functionality
126+
[missing-data]: https://pandas.pydata.org/pandas-docs/stable/missing_data.html#working-with-missing-data
127+
[insertion-deletion]: https://pandas.pydata.org/pandas-docs/stable/dsintro.html#column-selection-addition-deletion
128+
[alignment]: https://pandas.pydata.org/pandas-docs/stable/dsintro.html?highlight=alignment#intro-to-data-structures
129+
[groupby]: https://pandas.pydata.org/pandas-docs/stable/groupby.html#group-by-split-apply-combine
130+
[conversion]: https://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe
131+
[slicing]: https://pandas.pydata.org/pandas-docs/stable/indexing.html#slicing-ranges
132+
[fancy-indexing]: https://pandas.pydata.org/pandas-docs/stable/indexing.html#advanced-indexing-with-ix
133+
[subsetting]: https://pandas.pydata.org/pandas-docs/stable/indexing.html#boolean-indexing
134+
[merging]: https://pandas.pydata.org/pandas-docs/stable/merging.html#database-style-dataframe-joining-merging
135+
[joining]: https://pandas.pydata.org/pandas-docs/stable/merging.html#joining-on-index
136+
[reshape]: https://pandas.pydata.org/pandas-docs/stable/reshaping.html#reshaping-and-pivot-tables
137+
[pivot-table]: https://pandas.pydata.org/pandas-docs/stable/reshaping.html#pivot-tables-and-cross-tabulations
138+
[mi]: https://pandas.pydata.org/pandas-docs/stable/indexing.html#hierarchical-indexing-multiindex
139+
[flat-files]: https://pandas.pydata.org/pandas-docs/stable/io.html#csv-text-files
140+
[excel]: https://pandas.pydata.org/pandas-docs/stable/io.html#excel-files
141+
[db]: https://pandas.pydata.org/pandas-docs/stable/io.html#sql-queries
142+
[hdfstore]: https://pandas.pydata.org/pandas-docs/stable/io.html#hdf5-pytables
143+
[timeseries]: https://pandas.pydata.org/pandas-docs/stable/timeseries.html#time-series-date-functionality
144144

145145
## Where to get it
146146
The source code is currently hosted on GitHub at:
147-
http://github.com/pandas-dev/pandas
147+
https://github.com/pandas-dev/pandas
148148

149149
Binary installers for the latest released version are available at the [Python
150-
package index](http://pypi.python.org/pypi/pandas/) and on conda.
150+
package index](https://pypi.python.org/pypi/pandas) and on conda.
151151

152152
```sh
153153
# conda
@@ -161,11 +161,11 @@ pip install pandas
161161

162162
## Dependencies
163163
- [NumPy](http://www.numpy.org): 1.7.0 or higher
164-
- [python-dateutil](http://labix.org/python-dateutil): 1.5 or higher
165-
- [pytz](http://pytz.sourceforge.net)
164+
- [python-dateutil](https://labix.org/python-dateutil): 1.5 or higher
165+
- [pytz](https://pythonhosted.org/pytz)
166166
- Needed for time zone support with ``pandas.date_range``
167167

168-
See the [full installation instructions](http://pandas.pydata.org/pandas-docs/stable/install.html#dependencies)
168+
See the [full installation instructions](https://pandas.pydata.org/pandas-docs/stable/install.html#dependencies)
169169
for recommended and optional dependencies.
170170

171171
## Installation from sources
@@ -197,13 +197,13 @@ mode](https://pip.pypa.io/en/latest/reference/pip_install.html#editable-installs
197197
pip install -e .
198198
```
199199

200-
See the full instructions for [installing from source](http://pandas.pydata.org/pandas-docs/stable/install.html#installing-from-source).
200+
See the full instructions for [installing from source](https://pandas.pydata.org/pandas-docs/stable/install.html#installing-from-source).
201201

202202
## License
203-
BSD
203+
[BSD 3](LICENSE)
204204

205205
## Documentation
206-
The official documentation is hosted on PyData.org: http://pandas.pydata.org/pandas-docs/stable/
206+
The official documentation is hosted on PyData.org: https://pandas.pydata.org/pandas-docs/stable
207207

208208
The Sphinx documentation should provide a good starting point for learning how
209209
to use the library. Expect the docs to continue to expand as time goes on.
@@ -223,7 +223,7 @@ Most development discussion is taking place on github in this repo. Further, the
223223
## Contributing to pandas
224224
All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome.
225225

226-
A detailed overview on how to contribute can be found in the **[contributing guide.](http://pandas.pydata.org/pandas-docs/stable/contributing.html)**
226+
A detailed overview on how to contribute can be found in the **[contributing guide.](https://pandas.pydata.org/pandas-docs/stable/contributing.html)**
227227

228228
If you are simply looking to start working with the pandas codebase, navigate to the [GitHub “issues” tab](https://github.com/pandas-dev/pandas/issues) and start looking through interesting issues. There are a number of issues listed under [Docs](https://github.com/pandas-dev/pandas/issues?labels=Docs&sort=updated&state=open) and [Difficulty Novice](https://github.com/pandas-dev/pandas/issues?q=is%3Aopen+is%3Aissue+label%3A%22Difficulty+Novice%22) where you could start out.
229229

doc/source/gotchas.rst

+8-8
Original file line numberDiff line numberDiff line change
@@ -144,7 +144,7 @@ To evaluate single-element pandas objects in a boolean context, use the method `
144144
Bitwise boolean
145145
~~~~~~~~~~~~~~~
146146

147-
Bitwise boolean operators like ``==`` and ``!=`` will return a boolean ``Series``,
147+
Bitwise boolean operators like ``==`` and ``!=`` return a boolean ``Series``,
148148
which is almost always what you want anyways.
149149

150150
.. code-block:: python
@@ -194,7 +194,7 @@ For lack of ``NA`` (missing) support from the ground up in NumPy and Python in
194194
general, we were given the difficult choice between either
195195

196196
- A *masked array* solution: an array of data and an array of boolean values
197-
indicating whether a value
197+
indicating whether a value is there or is missing
198198
- Using a special sentinel value, bit pattern, or set of sentinel values to
199199
denote ``NA`` across the dtypes
200200

@@ -247,16 +247,16 @@ dtype in order to store the NAs. These are summarized by this table:
247247
``integer``, cast to ``float64``
248248
``boolean``, cast to ``object``
249249

250-
While this may seem like a heavy trade-off, I have found very few
251-
cases where this is an issue in practice. Some explanation for the motivation
252-
here in the next section.
250+
While this may seem like a heavy trade-off, I have found very few cases where
251+
this is an issue in practice i.e. storing values greater than 2**53. Some
252+
explanation for the motivation is in the next section.
253253

254254
Why not make NumPy like R?
255255
~~~~~~~~~~~~~~~~~~~~~~~~~~
256256

257257
Many people have suggested that NumPy should simply emulate the ``NA`` support
258258
present in the more domain-specific statistical programming language `R
259-
<http://r-project.org>`__. Part of the reason is the NumPy type hierarchy:
259+
<https://r-project.org>`__. Part of the reason is the NumPy type hierarchy:
260260

261261
.. csv-table::
262262
:header: "Typeclass","Dtypes"
@@ -305,7 +305,7 @@ the ``DataFrame.copy`` method. If you are doing a lot of copying of DataFrame
305305
objects shared among threads, we recommend holding locks inside the threads
306306
where the data copying occurs.
307307

308-
See `this link <http://stackoverflow.com/questions/13592618/python-pandas-dataframe-thread-safe>`__
308+
See `this link <https://stackoverflow.com/questions/13592618/python-pandas-dataframe-thread-safe>`__
309309
for more information.
310310

311311

@@ -332,5 +332,5 @@ using something similar to the following:
332332
s = pd.Series(newx)
333333
334334
See `the NumPy documentation on byte order
335-
<http://docs.scipy.org/doc/numpy/user/basics.byteswapping.html>`__ for more
335+
<https://docs.scipy.org/doc/numpy/user/basics.byteswapping.html>`__ for more
336336
details.

0 commit comments

Comments
 (0)