Skip to content

Commit 3c91148

Browse files
committed
small doc update
1 parent 2d0654a commit 3c91148

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

doc/source/whatsnew/v0.21.0.txt

+3-3
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ Highlights include:
1212
- Integration with `Apache Parquet <https://parquet.apache.org/>`__, including a new top-level :func:`read_parquet` and :func:`DataFrame.to_parquet` method, see :ref:`here <io.parquet>`.
1313
- New user-facing :class:`pandas.api.types.CategoricalDtype` for specifying
1414
categoricals independent of the data, see :ref:`here <whatsnew_0210.enhancements.categorical_dtype>`.
15-
- The behavior of ``sum`` and ``prod`` on all-NaN Series/DataFrames is now consistent without regards to `bottleneck <http://berkeleyanalytics.com/bottleneck>`__ is installed, see :ref:`here <whatsnew_0210.api_breaking.bottleneck>`
15+
- The behavior of ``sum`` and ``prod`` on all-NaN Series/DataFrames is now consistent and no longer depends on whether `bottleneck <http://berkeleyanalytics.com/bottleneck>`__ is installed, see :ref:`here <whatsnew_0210.api_breaking.bottleneck>`
1616

1717
Check the :ref:`API Changes <whatsnew_0210.api_breaking>` and :ref:`deprecations <whatsnew_0210.deprecations>` before updating.
1818

@@ -274,8 +274,8 @@ We have updated our minimum supported versions of dependencies (:issue:`15206`,
274274
Sum/Prod of all-NaN Series/DataFrames is now consistently NaN
275275
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
276276

277-
The behavior of summing all-NaN Series/DataFrames is now consistent without regards to
278-
whether `bottleneck <http://berkeleyanalytics.com/bottleneck>`__ is installed. (:issue:`9422`, :issue:`15507`).
277+
The behavior of ``sum`` and ``prod`` on all-NaN Series/DataFrames is now consistent and no longer depends on
278+
whether `bottleneck <http://berkeleyanalytics.com/bottleneck>`__ is installed. (:issue:`9422`, :issue:`15507`).
279279

280280
This now will *always* preserve information. You will get back a ``NaN``, indicating missing values in that Series,
281281
or if summing a ``DataFrame``, a ``Series`` of all-``NaN``.

0 commit comments

Comments
 (0)