@@ -1095,24 +1095,85 @@ def str_pad(arr, width, side='left', fillchar=' '):
1095
1095
1096
1096
def str_split (arr , pat = None , n = None ):
1097
1097
"""
1098
- Split each string (a la re.split) in the Series/Index by given
1099
- pattern, propagating NA values. Equivalent to :meth:`str.split`.
1098
+ Split strings around given separator/delimiter.
1099
+
1100
+ Split each string in the caller's values by given
1101
+ pattern, propagating NaN values. Equivalent to :meth:`str.split`.
1100
1102
1101
1103
Parameters
1102
1104
----------
1103
- pat : string, default None
1104
- String or regular expression to split on. If None, splits on whitespace
1105
+ pat : str, optional
1106
+ String or regular expression to split on.
1107
+ If `None`, split on whitespace.
1105
1108
n : int, default -1 (all)
1106
- None, 0 and -1 will be interpreted as return all splits
1109
+ Limit number of splits in output.
1110
+ `None`, 0 and -1 will be interpreted as return all splits.
1107
1111
expand : bool, default False
1108
- * If True, return DataFrame/MultiIndex expanding dimensionality.
1109
- * If False, return Series/Index.
1112
+ Expand the splitted strings into separate columns.
1110
1113
1111
- return_type : deprecated, use `expand`
1114
+ * If `True`, return DataFrame/MultiIndex expanding dimensionality.
1115
+ * If `False`, return Series/Index, containing lists of strings.
1112
1116
1113
1117
Returns
1114
1118
-------
1119
+ Type matches caller unless `expand=True` (return type is `DataFrame` or
1120
+ `MultiIndex`)
1115
1121
split : Series/Index or DataFrame/MultiIndex of objects
1122
+
1123
+ Notes
1124
+ -----
1125
+ - If n >= default splits, makes all splits
1126
+ - If n < default splits, makes first n splits only
1127
+ - Appends `None` for padding if `expand=True`
1128
+
1129
+ Examples
1130
+ --------
1131
+ >>> s = pd.Series(["this is good text", "but this is even better"])
1132
+
1133
+ By default, split will return an object of the same size
1134
+ having lists containing the split elements
1135
+
1136
+ >>> s.str.split()
1137
+ 0 [this, is, good, text]
1138
+ 1 [but, this, is, even, better]
1139
+ dtype: object
1140
+ >>> s.str.split("random")
1141
+ 0 [this is good text]
1142
+ 1 [but this is even better]
1143
+ dtype: object
1144
+
1145
+ When using `expand=True`, the split elements will
1146
+ expand out into separate columns.
1147
+
1148
+ >>> s.str.split(expand=True)
1149
+ 0 1 2 3 4
1150
+ 0 this is good text None
1151
+ 1 but this is even better
1152
+ >>> s.str.split(" is ", expand=True)
1153
+ 0 1
1154
+ 0 this good text
1155
+ 1 but this even better
1156
+
1157
+ Parameter `n` can be used to limit the number of splits in the output.
1158
+
1159
+ >>> s.str.split("is", n=1)
1160
+ 0 [th, is good text]
1161
+ 1 [but th, is even better]
1162
+ dtype: object
1163
+ >>> s.str.split("is", n=1, expand=True)
1164
+ 0 1
1165
+ 0 th is good text
1166
+ 1 but th is even better
1167
+
1168
+ If NaN is present, it is propagated throughout the columns
1169
+ during the split.
1170
+
1171
+ >>> s = pd.Series(["this is good text", "but this is even better", np.nan])
1172
+ >>> s.str.split(n=3, expand=True)
1173
+ 0 1 2 3
1174
+ 0 this is good text
1175
+ 1 but this is even better
1176
+ 2 NaN NaN NaN NaN
1116
1177
"""
1117
1178
if pat is None :
1118
1179
if n is None or n == 0 :
0 commit comments