Skip to content

Commit 37bb22a

Browse files
committed
DOC: RELEASE and whatsnew updated for DataFrame from lists change
1 parent 3c345a1 commit 37bb22a

File tree

2 files changed

+36
-17
lines changed

2 files changed

+36
-17
lines changed

RELEASE.rst

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -53,6 +53,9 @@ pandas 0.11.0
5353

5454
- Do not automatically upcast numeric specified dtypes to ``int64`` or
5555
``float64`` (GH622_ and GH797_)
56+
- DataFrame construction of lists will no longer be platform dependent when
57+
dtype is NOT specified, e.g. DataFrame([1,2]) will be ``int64``
58+
like DataFrame({'a' : [1,2]})
5659
- Guarantee that ``convert_objects()`` for Series/DataFrame always returns a
5760
copy
5861
- groupby operations will respect dtypes for numeric float operations

doc/source/v0.11.0.txt

Lines changed: 33 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
v0.11.0 (March ??, 2013)
44
------------------------
55

6-
This is a minor release from 0.10.1 and includes many new features and
6+
This is a major release from 0.10.1 and includes many new features and
77
enhancements along with a large number of bug fixes. There are also a number of
88
important API changes that long-time pandas users should pay close attention
99
to.
@@ -54,6 +54,18 @@ Numeric dtypes will propagate and can coexist in DataFrames. If a dtype is passe
5454
Timestamp('20010104'), '20010105'],dtype='O')
5555
s.convert_objects(convert_dates='coerce')
5656

57+
58+
**Platform Gotchas**
59+
60+
In versions prior to 0.11.0, DataFrame construction with lists was platform dependent (meaning 32-bit vs 64-bit).
61+
``DataFrame([1,2],columns=['a'])`` would have a dtype of ``int32``,
62+
while ``DataFrame({'a' : [1,2] })`` would be ``int64``.
63+
Now construction dtype defaults will be handled in a platform independent manor,
64+
resulting in defaults for integers of ``int64`` and floats of ``float64`` dtypes.
65+
66+
Keep in mind that ``DataFrame(np.array([1,2]))`` **WILL** result in ``int32`` on 32-bit platforms!
67+
68+
5769
**Upcasting Gotchas**
5870

5971
Performing indexing operations on integer type data can easily upcast the data.
@@ -82,21 +94,11 @@ While float dtypes are unchanged.
8294
casted
8395
casted.dtypes
8496

85-
New features
86-
~~~~~~~~~~~~
87-
88-
**Enhancements**
89-
90-
- In ``HDFStore``, provide dotted attribute access to ``get`` from stores (e.g. store.df == store['df'])
91-
92-
**Bug Fixes**
93-
94-
See the `full release notes
95-
<https://github.com/pydata/pandas/blob/master/RELEASE.rst>`__ or issue tracker
96-
on GitHub for a complete list.
97-
97+
**Datetimes conversion**
9898

99-
Datetime64[ns] columns in a DataFrame (or a Series) allow the use of ``np.nan`` to indicate a nan value, in addition to the traditional ``NaT``, or not-a-time. This allows convenient nan setting in a generic way. Furthermore datetime64 columns are created by default, when passed datetimelike objects (*this change was introduced in 0.10.1*)
99+
Datetime64[ns] columns in a DataFrame (or a Series) allow the use of ``np.nan`` to indicate a nan value,
100+
in addition to the traditional ``NaT``, or not-a-time. This allows convenient nan setting in a generic way.
101+
Furthermore ``datetime64[ns]`` columns are created by default, when passed datetimelike objects (*this change was introduced in 0.10.1*)
100102

101103
.. ipython:: python
102104

@@ -111,8 +113,7 @@ Datetime64[ns] columns in a DataFrame (or a Series) allow the use of ``np.nan``
111113
df.ix[2:4,['A','timestamp']] = np.nan
112114
df
113115

114-
Astype conversion on datetime64[ns] to object, implicity converts ``NaT`` to ``np.nan``
115-
116+
Astype conversion on ``datetime64[ns]`` to ``object``, implicity converts ``NaT`` to ``np.nan``
116117

117118
.. ipython:: python
118119

@@ -127,6 +128,13 @@ Astype conversion on datetime64[ns] to object, implicity converts ``NaT`` to ``n
127128
s.dtype
128129

129130

131+
New features
132+
~~~~~~~~~~~~
133+
134+
**Enhancements**
135+
136+
- In ``HDFStore``, provide dotted attribute access to ``get`` from stores (e.g. store.df == store['df'])
137+
130138
``Squeeze`` to possibly remove length 1 dimensions from an object.
131139

132140
.. ipython:: python
@@ -137,3 +145,11 @@ Astype conversion on datetime64[ns] to object, implicity converts ``NaT`` to ``n
137145
p
138146
p.reindex(items=['ItemA']).squeeze()
139147
p.reindex(items=['ItemA'],minor=['B']).squeeze()
148+
149+
**Bug Fixes**
150+
151+
See the `full release notes
152+
<https://github.com/pydata/pandas/blob/master/RELEASE.rst>`__ or issue tracker
153+
on GitHub for a complete list.
154+
155+

0 commit comments

Comments
 (0)