@@ -127,27 +127,41 @@ class DatetimeProperties(Properties):
127
127
128
128
def to_pydatetime (self ):
129
129
"""
130
- Return Series as a native Python datetime objects.
130
+ Return an ndarray of native Python datetime objects.
131
+
132
+ Timezone information is retained if present.
131
133
132
134
Returns
133
135
-------
134
- Series of object dtype
135
-
136
- See Also
137
- --------
138
- pandas.DatetimeIndex.to_pydatetime : Convert a Timestamp object to a native
139
- Python datetime object.
136
+ numpy.ndarray
137
+ object dtype array containing native Python datetime objects.
140
138
141
139
Examples
142
140
--------
141
+ This method is available on both Series with datetime values, under the
142
+ ``.dt`` accessor, and directly on DatetimeIndex.
143
+
144
+ **Series**
145
+
143
146
>>> s = pd.Series(pd.date_range('20180310', periods=2))
144
147
>>> s.head()
145
148
0 2018-03-10
146
149
1 2018-03-11
147
150
dtype: datetime64[ns]
151
+
148
152
>>> s.dt.to_pydatetime()
149
153
array([datetime.datetime(2018, 3, 10, 0, 0),
150
- datetime.datetime(2018, 3, 11, 0, 0)], dtype=object)
154
+ datetime.datetime(2018, 3, 11, 0, 0)], dtype=object)
155
+
156
+ **DatetimeIndex**
157
+ >>> idx = pd.date_range("2018-03-10", periods=2)
158
+ >>> idx # doctest: +NORMALIZE_WHITESPACE
159
+ DatetimeIndex(['2018-03-10', '2018-03-11'],
160
+ dtype='datetime64[ns]', freq='D')
161
+
162
+ >>> idx.to_pydatetime()
163
+ array([datetime.datetime(2018, 3, 10, 0, 0),
164
+ datetime.datetime(2018, 3, 11, 0, 0)], dtype=object)
151
165
"""
152
166
return self ._get_values ().to_pydatetime ()
153
167
0 commit comments