@@ -2232,6 +2232,89 @@ def to_html(
2232
2232
is used. By default, the setting in
2233
2233
``pandas.options.display.max_info_columns`` is used.
2234
2234
""" ,
2235
+ examples_sub = """
2236
+ >>> int_values = [1, 2, 3, 4, 5]
2237
+ >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon']
2238
+ >>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0]
2239
+ >>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values,
2240
+ ... "float_col": float_values})
2241
+ >>> df
2242
+ int_col text_col float_col
2243
+ 0 1 alpha 0.00
2244
+ 1 2 beta 0.25
2245
+ 2 3 gamma 0.50
2246
+ 3 4 delta 0.75
2247
+ 4 5 epsilon 1.00
2248
+
2249
+ Prints information of all columns:
2250
+
2251
+ >>> df.info(verbose=True)
2252
+ <class 'pandas.core.frame.DataFrame'>
2253
+ RangeIndex: 5 entries, 0 to 4
2254
+ Data columns (total 3 columns):
2255
+ # Column Non-Null Count Dtype
2256
+ --- ------ -------------- -----
2257
+ 0 int_col 5 non-null int64
2258
+ 1 text_col 5 non-null object
2259
+ 2 float_col 5 non-null float64
2260
+ dtypes: float64(1), int64(1), object(1)
2261
+ memory usage: 248.0+ bytes
2262
+
2263
+ Prints a summary of columns count and its dtypes but not per column
2264
+ information:
2265
+
2266
+ >>> df.info(verbose=False)
2267
+ <class 'pandas.core.frame.DataFrame'>
2268
+ RangeIndex: 5 entries, 0 to 4
2269
+ Columns: 3 entries, int_col to float_col
2270
+ dtypes: float64(1), int64(1), object(1)
2271
+ memory usage: 248.0+ bytes
2272
+
2273
+ Pipe output of DataFrame.info to buffer instead of sys.stdout, get
2274
+ buffer content and writes to a text file:
2275
+
2276
+ >>> import io
2277
+ >>> buffer = io.StringIO()
2278
+ >>> df.info(buf=buffer)
2279
+ >>> s = buffer.getvalue()
2280
+ >>> with open("df_info.txt", "w",
2281
+ ... encoding="utf-8") as f: # doctest: +SKIP
2282
+ ... f.write(s)
2283
+ 260
2284
+
2285
+ The `memory_usage` parameter allows deep introspection mode, specially
2286
+ useful for big DataFrames and fine-tune memory optimization:
2287
+
2288
+ >>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6)
2289
+ >>> df = pd.DataFrame({
2290
+ ... 'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6),
2291
+ ... 'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6),
2292
+ ... 'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6)
2293
+ ... })
2294
+ >>> df.info()
2295
+ <class 'pandas.core.frame.DataFrame'>
2296
+ RangeIndex: 1000000 entries, 0 to 999999
2297
+ Data columns (total 3 columns):
2298
+ # Column Non-Null Count Dtype
2299
+ --- ------ -------------- -----
2300
+ 0 column_1 1000000 non-null object
2301
+ 1 column_2 1000000 non-null object
2302
+ 2 column_3 1000000 non-null object
2303
+ dtypes: object(3)
2304
+ memory usage: 22.9+ MB
2305
+
2306
+ >>> df.info(memory_usage='deep')
2307
+ <class 'pandas.core.frame.DataFrame'>
2308
+ RangeIndex: 1000000 entries, 0 to 999999
2309
+ Data columns (total 3 columns):
2310
+ # Column Non-Null Count Dtype
2311
+ --- ------ -------------- -----
2312
+ 0 column_1 1000000 non-null object
2313
+ 1 column_2 1000000 non-null object
2314
+ 2 column_3 1000000 non-null object
2315
+ dtypes: object(3)
2316
+ memory usage: 188.8 MB
2317
+ """ ,
2235
2318
)
2236
2319
@Appender (NDFrame .info .__doc__ )
2237
2320
def info (
0 commit comments