@@ -84,122 +84,6 @@ def test_api(self):
84
84
assert isinstance (result , DataFrame )
85
85
assert len (result ) == 217
86
86
87
- def test_api_changes_v018 (self ):
88
-
89
- # change from .resample(....., how=...)
90
- # to .resample(......).how()
91
-
92
- r = self .series .resample ('H' )
93
- assert isinstance (r , DatetimeIndexResampler )
94
-
95
- for how in ['sum' , 'mean' , 'prod' , 'min' , 'max' , 'var' , 'std' ]:
96
- with tm .assert_produces_warning (FutureWarning ,
97
- check_stacklevel = False ):
98
- result = self .series .resample ('H' , how = how )
99
- expected = getattr (self .series .resample ('H' ), how )()
100
- tm .assert_series_equal (result , expected )
101
-
102
- with tm .assert_produces_warning (FutureWarning ,
103
- check_stacklevel = False ):
104
- result = self .series .resample ('H' , how = 'ohlc' )
105
- expected = self .series .resample ('H' ).ohlc ()
106
- tm .assert_frame_equal (result , expected )
107
-
108
- # compat for pandas-like methods
109
- for how in ['sort_values' , 'isna' ]:
110
- with tm .assert_produces_warning (FutureWarning ,
111
- check_stacklevel = False ):
112
- getattr (r , how )()
113
-
114
- # invalids as these can be setting operations
115
- r = self .series .resample ('H' )
116
- pytest .raises (ValueError , lambda : r .iloc [0 ])
117
- pytest .raises (ValueError , lambda : r .iat [0 ])
118
- pytest .raises (ValueError , lambda : r .loc [0 ])
119
- pytest .raises (ValueError , lambda : r .loc [
120
- Timestamp ('2013-01-01 00:00:00' , offset = 'H' )])
121
- pytest .raises (ValueError , lambda : r .at [
122
- Timestamp ('2013-01-01 00:00:00' , offset = 'H' )])
123
-
124
- def f ():
125
- r [0 ] = 5
126
-
127
- pytest .raises (ValueError , f )
128
-
129
- # str/repr
130
- r = self .series .resample ('H' )
131
- with tm .assert_produces_warning (None ):
132
- str (r )
133
- with tm .assert_produces_warning (None ):
134
- repr (r )
135
-
136
- with tm .assert_produces_warning (FutureWarning ,
137
- check_stacklevel = False ):
138
- tm .assert_numpy_array_equal (np .array (r ), np .array (r .mean ()))
139
-
140
- # masquerade as Series/DataFrame as needed for API compat
141
- assert isinstance (self .series .resample ('H' ), ABCSeries )
142
- assert not isinstance (self .frame .resample ('H' ), ABCSeries )
143
- assert not isinstance (self .series .resample ('H' ), ABCDataFrame )
144
- assert isinstance (self .frame .resample ('H' ), ABCDataFrame )
145
-
146
- # bin numeric ops
147
- for op in ['__add__' , '__mul__' , '__truediv__' , '__div__' , '__sub__' ]:
148
-
149
- if getattr (self .series , op , None ) is None :
150
- continue
151
- r = self .series .resample ('H' )
152
-
153
- with tm .assert_produces_warning (FutureWarning ,
154
- check_stacklevel = False ):
155
- assert isinstance (getattr (r , op )(2 ), Series )
156
-
157
- # unary numeric ops
158
- for op in ['__pos__' , '__neg__' , '__abs__' , '__inv__' ]:
159
-
160
- if getattr (self .series , op , None ) is None :
161
- continue
162
- r = self .series .resample ('H' )
163
-
164
- with tm .assert_produces_warning (FutureWarning ,
165
- check_stacklevel = False ):
166
- assert isinstance (getattr (r , op )(), Series )
167
-
168
- # comparison ops
169
- for op in ['__lt__' , '__le__' , '__gt__' , '__ge__' , '__eq__' , '__ne__' ]:
170
- r = self .series .resample ('H' )
171
-
172
- with tm .assert_produces_warning (FutureWarning ,
173
- check_stacklevel = False ):
174
- assert isinstance (getattr (r , op )(2 ), Series )
175
-
176
- # IPython introspection shouldn't trigger warning GH 13618
177
- for op in ['_repr_json' , '_repr_latex' ,
178
- '_ipython_canary_method_should_not_exist_' ]:
179
- r = self .series .resample ('H' )
180
- with tm .assert_produces_warning (None ):
181
- getattr (r , op , None )
182
-
183
- # getitem compat
184
- df = self .series .to_frame ('foo' )
185
-
186
- # same as prior versions for DataFrame
187
- pytest .raises (KeyError , lambda : df .resample ('H' )[0 ])
188
-
189
- # compat for Series
190
- # but we cannot be sure that we need a warning here
191
- with tm .assert_produces_warning (FutureWarning ,
192
- check_stacklevel = False ):
193
- result = self .series .resample ('H' )[0 ]
194
- expected = self .series .resample ('H' ).mean ()[0 ]
195
- assert result == expected
196
-
197
- with tm .assert_produces_warning (FutureWarning ,
198
- check_stacklevel = False ):
199
- result = self .series .resample ('H' )['2005-01-09 23:00:00' ]
200
- expected = self .series .resample ('H' ).mean ()['2005-01-09 23:00:00' ]
201
- assert result == expected
202
-
203
87
def test_groupby_resample_api (self ):
204
88
205
89
# GH 12448
@@ -251,23 +135,6 @@ def test_pipe(self):
251
135
result = r .pipe (lambda x : x .max () - x .mean ())
252
136
tm .assert_frame_equal (result , expected )
253
137
254
- @td .skip_if_no_mpl
255
- def test_plot_api (self ):
256
- # .resample(....).plot(...)
257
- # hitting warnings
258
- # GH 12448
259
- s = Series (np .random .randn (60 ),
260
- index = date_range ('2016-01-01' , periods = 60 , freq = '1min' ))
261
- with tm .assert_produces_warning (FutureWarning ,
262
- check_stacklevel = False ):
263
- result = s .resample ('15min' ).plot ()
264
- tm .assert_is_valid_plot_return_object (result )
265
-
266
- with tm .assert_produces_warning (FutureWarning ,
267
- check_stacklevel = False ):
268
- result = s .resample ('15min' , how = 'sum' ).plot ()
269
- tm .assert_is_valid_plot_return_object (result )
270
-
271
138
def test_getitem (self ):
272
139
273
140
r = self .frame .resample ('H' )
@@ -301,15 +168,6 @@ def test_attribute_access(self):
301
168
r = self .frame .resample ('H' )
302
169
tm .assert_series_equal (r .A .sum (), r ['A' ].sum ())
303
170
304
- # getting
305
- pytest .raises (AttributeError , lambda : r .F )
306
-
307
- # setting
308
- def f ():
309
- r .F = 'bah'
310
-
311
- pytest .raises (ValueError , f )
312
-
313
171
def test_api_compat_before_use (self ):
314
172
315
173
# make sure that we are setting the binner
@@ -3012,23 +2870,6 @@ def setup_method(self, method):
3012
2870
freq = 's' ,
3013
2871
periods = 40 ))
3014
2872
3015
- def test_back_compat_v180 (self ):
3016
-
3017
- df = self .frame
3018
- for how in ['sum' , 'mean' , 'prod' , 'min' , 'max' , 'var' , 'std' ]:
3019
- with tm .assert_produces_warning (FutureWarning ,
3020
- check_stacklevel = False ):
3021
- result = df .groupby ('A' ).resample ('4s' , how = how )
3022
- expected = getattr (df .groupby ('A' ).resample ('4s' ), how )()
3023
- assert_frame_equal (result , expected )
3024
-
3025
- with tm .assert_produces_warning (FutureWarning ,
3026
- check_stacklevel = False ):
3027
- result = df .groupby ('A' ).resample ('4s' , how = 'mean' ,
3028
- fill_method = 'ffill' )
3029
- expected = df .groupby ('A' ).resample ('4s' ).mean ().ffill ()
3030
- assert_frame_equal (result , expected )
3031
-
3032
2873
def test_tab_complete_ipython6_warning (self , ip ):
3033
2874
from IPython .core .completer import provisionalcompleter
3034
2875
code = dedent ("""\
0 commit comments