Skip to content

Commit 248c191

Browse files
committed
black
1 parent f717a7e commit 248c191

File tree

1 file changed

+50
-49
lines changed

1 file changed

+50
-49
lines changed

pandas/tests/groupby/test_categorical.py

+50-49
Original file line numberDiff line numberDiff line change
@@ -1259,45 +1259,40 @@ def test_get_nonexistent_category():
12591259
)
12601260

12611261

1262-
def test_dataframe_groupby_on_2_categoricals_when_observed_is_true(
1263-
reduction_func:str):
1262+
def test_dataframe_groupby_on_2_categoricals_when_observed_is_true(reduction_func: str):
12641263

1265-
if reduction_func == 'ngroup':
1264+
if reduction_func == "ngroup":
12661265
pytest.skip("ngroup does not return the Categories on the index")
12671266

12681267
res, unobserved_cats = _dataframe_groupby_on_2_categoricals(
1269-
reduction_func, observed=True)
1270-
1268+
reduction_func, observed=True
1269+
)
1270+
12711271
for cat in unobserved_cats:
1272-
assert cat not in res.index
1273-
1274-
1275-
def _dataframe_groupby_on_2_categoricals(reduction_func:str, observed:bool):
1276-
1277-
df = pd.DataFrame({
1278-
"cat_1": pd.Categorical(list("AABB"), categories=list("ABC")),
1279-
"cat_2": pd.Categorical(list("1111"), categories=list("12")),
1280-
"value": [.1, .1, .1, .1]
1281-
})
1282-
unobserved_cats = [
1283-
('A', '2'),
1284-
('B', '2'),
1285-
('C', '1'),
1286-
('C', '2')
1287-
]
1288-
1289-
df_grp = df.groupby(['cat_1', 'cat_2'], observed=observed)
1290-
1291-
args = {
1292-
'nth' : [0],
1293-
'corrwith' : [df]
1294-
}.get(reduction_func, [])
1272+
assert cat not in res.index
1273+
1274+
1275+
def _dataframe_groupby_on_2_categoricals(reduction_func: str, observed: bool):
1276+
1277+
df = pd.DataFrame(
1278+
{
1279+
"cat_1": pd.Categorical(list("AABB"), categories=list("ABC")),
1280+
"cat_2": pd.Categorical(list("1111"), categories=list("12")),
1281+
"value": [0.1, 0.1, 0.1, 0.1],
1282+
}
1283+
)
1284+
unobserved_cats = [("A", "2"), ("B", "2"), ("C", "1"), ("C", "2")]
1285+
1286+
df_grp = df.groupby(["cat_1", "cat_2"], observed=observed)
1287+
1288+
args = {"nth": [0], "corrwith": [df]}.get(reduction_func, [])
12951289
res = getattr(df_grp, reduction_func)(*args)
1296-
1290+
12971291
return res, unobserved_cats
12981292

12991293

1300-
_results_for_groupbys_with_missing_categories = dict([
1294+
_results_for_groupbys_with_missing_categories = dict(
1295+
[
13011296
("all", np.NaN),
13021297
("any", np.NaN),
13031298
("count", 0),
@@ -1321,33 +1316,38 @@ def _dataframe_groupby_on_2_categoricals(reduction_func:str, observed:bool):
13211316
("std", np.NaN),
13221317
("sum", np.NaN),
13231318
("var", np.NaN),
1324-
])
1319+
]
1320+
)
13251321

13261322

1327-
@pytest.mark.parametrize('observed', [False, None])
1323+
@pytest.mark.parametrize("observed", [False, None])
13281324
def test_dataframe_groupby_on_2_categoricals_when_observed_is_false(
1329-
reduction_func:str, observed:bool, request):
1330-
1331-
if reduction_func == 'ngroup':
1325+
reduction_func: str, observed: bool, request
1326+
):
1327+
1328+
if reduction_func == "ngroup":
13321329
pytest.skip("ngroup does not return the Categories on the index")
1333-
1334-
if reduction_func == 'count':
1330+
1331+
if reduction_func == "count":
13351332
mark = pytest.mark.xfail(
1336-
reason=("DataFrameGroupBy.count returns np.NaN for missing "
1337-
"categories, when it should return 0"))
1333+
reason=(
1334+
"DataFrameGroupBy.count returns np.NaN for missing "
1335+
"categories, when it should return 0"
1336+
)
1337+
)
13381338
request.node.add_marker(mark)
13391339

13401340
res, unobserved_cats = _dataframe_groupby_on_2_categoricals(
1341-
reduction_func, observed)
1342-
1341+
reduction_func, observed
1342+
)
1343+
13431344
expected = _results_for_groupbys_with_missing_categories[reduction_func]
1344-
1345+
13451346
if expected is np.nan:
13461347
assert res.loc[unobserved_cats].isnull().all().all()
13471348
else:
13481349
assert (res.loc[unobserved_cats] == expected).all().all()
1349-
1350-
1350+
13511351

13521352
def test_series_groupby_on_2_categoricals_unobserved(
13531353
reduction_func: str, observed: bool, request
@@ -1379,17 +1379,18 @@ def test_series_groupby_on_2_categoricals_unobserved(
13791379

13801380

13811381
def test_series_groupby_on_2_categoricals_unobserved_zeroes_or_nans(
1382-
reduction_func:str, request):
1382+
reduction_func: str, request
1383+
):
13831384
# GH 17605
13841385
# Tests whether the unobserved categories in the result contain 0 or NaN
1385-
1386+
13861387
if reduction_func == "ngroup":
13871388
pytest.skip("ngroup is not truly a reduction")
1388-
1389+
13891390
if reduction_func == "corrwith": # GH 32293
13901391
mark = pytest.mark.xfail(reason="TODO: implemented SeriesGroupBy.corrwith")
13911392
request.node.add_marker(mark)
1392-
1393+
13931394
df = pd.DataFrame(
13941395
{
13951396
"cat_1": pd.Categorical(list("AABB"), categories=list("ABC")),
@@ -1403,7 +1404,7 @@ def test_series_groupby_on_2_categoricals_unobserved_zeroes_or_nans(
14031404
series_groupby = df.groupby(["cat_1", "cat_2"], observed=False)["value"]
14041405
agg = getattr(series_groupby, reduction_func)
14051406
result = agg(*args)
1406-
1407+
14071408
zero_or_nan = _results_for_groupbys_with_missing_categories[reduction_func]
14081409

14091410
for idx in unobserved:

0 commit comments

Comments
 (0)