Skip to content

Commit 243d3ec

Browse files
committed
Remove unnecessary changes
1 parent db8ea2e commit 243d3ec

File tree

20 files changed

+92
-109
lines changed

20 files changed

+92
-109
lines changed

pandas/core/algorithms.py

-2
Original file line numberDiff line numberDiff line change
@@ -719,8 +719,6 @@ def value_counts(
719719

720720
if normalize:
721721
result = result / float(counts.sum())
722-
else:
723-
result = result.astype("Int64")
724722

725723
return result
726724

pandas/core/arrays/masked.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -259,7 +259,7 @@ def value_counts(self, dropna: bool = True) -> "Series":
259259

260260
# if we want nans, count the mask
261261
if dropna:
262-
counts = np.array(value_counts._values, dtype=int)
262+
counts = value_counts._values
263263
else:
264264
counts = np.empty(len(value_counts) + 1, dtype="int64")
265265
counts[:-1] = value_counts
@@ -273,4 +273,4 @@ def value_counts(self, dropna: bool = True) -> "Series":
273273
mask = np.zeros(len(counts), dtype="bool")
274274
counts = IntegerArray(counts, mask)
275275

276-
return Series(counts, index=index, dtype="Int64")
276+
return Series(counts, index=index)

pandas/core/arrays/string_.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -290,7 +290,7 @@ def _reduce(self, name, skipna=True, **kwargs):
290290
def value_counts(self, dropna=False):
291291
from pandas import value_counts
292292

293-
return value_counts(self._ndarray, dropna=dropna).astype("Int64")
293+
return value_counts(self._ndarray, dropna=dropna)
294294

295295
# Override parent because we have different return types.
296296
@classmethod

pandas/core/base.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -1206,7 +1206,7 @@ def value_counts(
12061206
4.0 1
12071207
2.0 1
12081208
1.0 1
1209-
dtype: Int64
1209+
dtype: int64
12101210
12111211
With `normalize` set to `True`, returns the relative frequency by
12121212
dividing all values by the sum of values.
@@ -1230,7 +1230,7 @@ def value_counts(
12301230
(2.0, 3.0] 2
12311231
(0.996, 2.0] 2
12321232
(3.0, 4.0] 1
1233-
dtype: Int64
1233+
dtype: int64
12341234
12351235
**dropna**
12361236
@@ -1242,7 +1242,7 @@ def value_counts(
12421242
4.0 1
12431243
2.0 1
12441244
1.0 1
1245-
dtype: Int64
1245+
dtype: int64
12461246
"""
12471247
result = value_counts(
12481248
self,

pandas/core/groupby/generic.py

+2-6
Original file line numberDiff line numberDiff line change
@@ -757,12 +757,10 @@ def value_counts(
757757
mi = MultiIndex(
758758
levels=levels, codes=codes, names=names, verify_integrity=False
759759
)
760-
dtype = "float64"
761760

762761
if is_integer_dtype(out):
763762
out = ensure_int64(out)
764-
dtype = "Int64"
765-
return Series(out, index=mi, name=self._selection_name, dtype=dtype)
763+
return Series(out, index=mi, name=self._selection_name)
766764

767765
# for compat. with libgroupby.value_counts need to ensure every
768766
# bin is present at every index level, null filled with zeros
@@ -791,12 +789,10 @@ def build_codes(lev_codes: np.ndarray) -> np.ndarray:
791789
codes.append(left[-1])
792790

793791
mi = MultiIndex(levels=levels, codes=codes, names=names, verify_integrity=False)
794-
dtype = "float64"
795792

796793
if is_integer_dtype(out):
797794
out = ensure_int64(out)
798-
dtype = "Int64"
799-
return Series(out, index=mi, name=self._selection_name, dtype=dtype)
795+
return Series(out, index=mi, name=self._selection_name)
800796

801797
def count(self) -> Series:
802798
"""

pandas/tests/arrays/integer/test_function.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -93,7 +93,7 @@ def test_stat_method(pandasmethname, kwargs):
9393

9494

9595
def test_value_counts_na():
96-
arr = pd.array([1, 2, 1, pd.NA])
96+
arr = pd.array([1, 2, 1, pd.NA], dtype="Int64")
9797
result = arr.value_counts(dropna=False)
9898
expected = pd.Series([2, 1, 1], index=[1, 2, pd.NA], dtype="Int64")
9999
tm.assert_series_equal(result, expected)
@@ -105,10 +105,10 @@ def test_value_counts_na():
105105

106106
def test_value_counts_empty():
107107
# https://github.com/pandas-dev/pandas/issues/33317
108-
s = pd.Series([], dtype="float64")
108+
s = pd.Series([], dtype="Int64")
109109
result = s.value_counts()
110110
# TODO: The dtype of the index seems wrong (it's int64 for non-empty)
111-
idx = pd.Float64Index([], dtype="float64")
111+
idx = pd.Index([], dtype="object")
112112
expected = pd.Series([], index=idx, dtype="Int64")
113113
tm.assert_series_equal(result, expected)
114114

pandas/tests/arrays/string_/test_string.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -297,9 +297,9 @@ def test_arrow_roundtrip():
297297
def test_value_counts_na():
298298
arr = pd.array(["a", "b", "a", pd.NA], dtype="string")
299299
result = arr.value_counts(dropna=False)
300-
expected = pd.Series([2, 1, 1], index=["a", "b", pd.NA], dtype="Int64")
300+
expected = pd.Series([2, 1, 1], index=["a", "b", pd.NA])
301301
tm.assert_series_equal(result, expected)
302302

303303
result = arr.value_counts(dropna=True)
304-
expected = pd.Series([2, 1], index=["a", "b"], dtype="Int64")
304+
expected = pd.Series([2, 1], index=["a", "b"])
305305
tm.assert_series_equal(result, expected)

pandas/tests/arrays/test_datetimes.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -248,7 +248,7 @@ def test_value_counts_preserves_tz(self):
248248

249249
arr[-2] = pd.NaT
250250
result = arr.value_counts()
251-
expected = pd.Series([1, 4, 2], index=[pd.NaT, dti[0], dti[1]], dtype="Int64")
251+
expected = pd.Series([1, 4, 2], index=[pd.NaT, dti[0], dti[1]])
252252
tm.assert_series_equal(result, expected)
253253

254254
@pytest.mark.parametrize("method", ["pad", "backfill"])

pandas/tests/base/test_value_counts.py

+18-20
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@ def test_value_counts(index_or_series_obj):
3030
result = obj.value_counts()
3131

3232
counter = collections.Counter(obj)
33-
expected = pd.Series(dict(counter.most_common()), dtype="Int64", name=obj.name)
33+
expected = pd.Series(dict(counter.most_common()), dtype=np.int64, name=obj.name)
3434
expected.index = expected.index.astype(obj.dtype)
3535
if isinstance(obj, pd.MultiIndex):
3636
expected.index = pd.Index(expected.index)
@@ -67,7 +67,7 @@ def test_value_counts_null(null_obj, index_or_series_obj):
6767
# because np.nan == np.nan is False, but None == None is True
6868
# np.nan would be duplicated, whereas None wouldn't
6969
counter = collections.Counter(obj.dropna())
70-
expected = pd.Series(dict(counter.most_common()), dtype="Int64")
70+
expected = pd.Series(dict(counter.most_common()), dtype=np.int64)
7171
expected.index = expected.index.astype(obj.dtype)
7272

7373
result = obj.value_counts()
@@ -80,7 +80,7 @@ def test_value_counts_null(null_obj, index_or_series_obj):
8080

8181
# can't use expected[null_obj] = 3 as
8282
# IntervalIndex doesn't allow assignment
83-
new_entry = pd.Series({np.nan: 3}, dtype="Int64")
83+
new_entry = pd.Series({np.nan: 3}, dtype=np.int64)
8484
expected = expected.append(new_entry)
8585

8686
result = obj.value_counts(dropna=False)
@@ -96,7 +96,7 @@ def test_value_counts_inferred(index_or_series):
9696
klass = index_or_series
9797
s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"]
9898
s = klass(s_values)
99-
expected = Series([4, 3, 2, 1], index=["b", "a", "d", "c"], dtype="Int64")
99+
expected = Series([4, 3, 2, 1], index=["b", "a", "d", "c"])
100100
tm.assert_series_equal(s.value_counts(), expected)
101101

102102
if isinstance(s, Index):
@@ -110,17 +110,17 @@ def test_value_counts_inferred(index_or_series):
110110
# don't sort, have to sort after the fact as not sorting is
111111
# platform-dep
112112
hist = s.value_counts(sort=False).sort_values()
113-
expected = Series([3, 1, 4, 2], index=list("acbd"), dtype="Int64").sort_values()
113+
expected = Series([3, 1, 4, 2], index=list("acbd")).sort_values()
114114
tm.assert_series_equal(hist, expected)
115115

116116
# sort ascending
117117
hist = s.value_counts(ascending=True)
118-
expected = Series([1, 2, 3, 4], index=list("cdab"), dtype="Int64")
118+
expected = Series([1, 2, 3, 4], index=list("cdab"))
119119
tm.assert_series_equal(hist, expected)
120120

121121
# relative histogram.
122122
hist = s.value_counts(normalize=True)
123-
expected = Series([0.4, 0.3, 0.2, 0.1], index=["b", "a", "d", "c"], dtype="float64")
123+
expected = Series([0.4, 0.3, 0.2, 0.1], index=["b", "a", "d", "c"])
124124
tm.assert_series_equal(hist, expected)
125125

126126

@@ -136,41 +136,39 @@ def test_value_counts_bins(index_or_series):
136136

137137
s1 = Series([1, 1, 2, 3])
138138
res1 = s1.value_counts(bins=1)
139-
exp1 = Series({Interval(0.997, 3.0): 4}, dtype="Int64")
139+
exp1 = Series({Interval(0.997, 3.0): 4})
140140
tm.assert_series_equal(res1, exp1)
141141
res1n = s1.value_counts(bins=1, normalize=True)
142-
exp1n = Series({Interval(0.997, 3.0): 1.0}, dtype="float64")
142+
exp1n = Series({Interval(0.997, 3.0): 1.0})
143143
tm.assert_series_equal(res1n, exp1n)
144144

145145
if isinstance(s1, Index):
146146
tm.assert_index_equal(s1.unique(), Index([1, 2, 3]))
147147
else:
148-
exp = np.array([1, 2, 3], dtype="int64")
148+
exp = np.array([1, 2, 3], dtype=np.int64)
149149
tm.assert_numpy_array_equal(s1.unique(), exp)
150150

151151
assert s1.nunique() == 3
152152

153153
# these return the same
154154
res4 = s1.value_counts(bins=4, dropna=True)
155155
intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0])
156-
exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2]), dtype="Int64")
156+
exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2]))
157157
tm.assert_series_equal(res4, exp4)
158158

159159
res4 = s1.value_counts(bins=4, dropna=False)
160160
intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0])
161-
exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2]), dtype="Int64")
161+
exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2]))
162162
tm.assert_series_equal(res4, exp4)
163163

164164
res4n = s1.value_counts(bins=4, normalize=True)
165-
exp4n = Series(
166-
[0.5, 0.25, 0.25, 0], index=intervals.take([0, 3, 1, 2]), dtype="float64"
167-
)
165+
exp4n = Series([0.5, 0.25, 0.25, 0], index=intervals.take([0, 3, 1, 2]))
168166
tm.assert_series_equal(res4n, exp4n)
169167

170168
# handle NA's properly
171169
s_values = ["a", "b", "b", "b", np.nan, np.nan, "d", "d", "a", "a", "b"]
172170
s = klass(s_values)
173-
expected = Series(data=[4, 3, 2], index=["b", "a", "d"], dtype="Int64")
171+
expected = Series([4, 3, 2], index=["b", "a", "d"])
174172
tm.assert_series_equal(s.value_counts(), expected)
175173

176174
if isinstance(s, Index):
@@ -182,7 +180,7 @@ def test_value_counts_bins(index_or_series):
182180
assert s.nunique() == 3
183181

184182
s = klass({}) if klass is dict else klass({}, dtype=object)
185-
expected = Series([], dtype="Int64")
183+
expected = Series([], dtype=np.int64)
186184
tm.assert_series_equal(s.value_counts(), expected, check_index_type=False)
187185
# returned dtype differs depending on original
188186
if isinstance(s, Index):
@@ -218,7 +216,7 @@ def test_value_counts_datetime64(index_or_series):
218216
idx = pd.to_datetime(
219217
["2010-01-01 00:00:00", "2008-09-09 00:00:00", "2009-01-01 00:00:00"]
220218
)
221-
expected_s = Series([3, 2, 1], index=idx, dtype="Int64")
219+
expected_s = Series([3, 2, 1], index=idx)
222220
tm.assert_series_equal(s.value_counts(), expected_s)
223221

224222
expected = np_array_datetime64_compat(
@@ -242,7 +240,7 @@ def test_value_counts_datetime64(index_or_series):
242240

243241
result = s.value_counts(dropna=False)
244242
expected_s[pd.NaT] = 1
245-
tm.assert_series_equal(result, expected_s.astype("Int64"))
243+
tm.assert_series_equal(result, expected_s)
246244

247245
unique = s.unique()
248246
assert unique.dtype == "datetime64[ns]"
@@ -263,7 +261,7 @@ def test_value_counts_datetime64(index_or_series):
263261
td = klass(td, name="dt")
264262

265263
result = td.value_counts()
266-
expected_s = Series([6], index=[Timedelta("1day")], name="dt", dtype="Int64")
264+
expected_s = Series([6], index=[Timedelta("1day")], name="dt")
267265
tm.assert_series_equal(result, expected_s)
268266

269267
expected = TimedeltaIndex(["1 days"], name="dt")

pandas/tests/extension/test_datetime.py

+4
Original file line numberDiff line numberDiff line change
@@ -90,6 +90,10 @@ class TestGetitem(BaseDatetimeTests, base.BaseGetitemTests):
9090

9191

9292
class TestMethods(BaseDatetimeTests, base.BaseMethodsTests):
93+
@pytest.mark.skip(reason="Incorrect expected")
94+
def test_value_counts(self, all_data, dropna):
95+
pass
96+
9397
def test_combine_add(self, data_repeated):
9498
# Timestamp.__add__(Timestamp) not defined
9599
pass

pandas/tests/frame/test_api.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -444,7 +444,7 @@ def test_with_datetimelikes(self):
444444
t = df.T
445445

446446
result = t.dtypes.value_counts()
447-
expected = Series({np.dtype("object"): 10}, dtype="Int64")
447+
expected = Series({np.dtype("object"): 10})
448448
tm.assert_series_equal(result, expected)
449449

450450
def test_values(self, float_frame):

pandas/tests/frame/test_arithmetic.py

+2-4
Original file line numberDiff line numberDiff line change
@@ -325,8 +325,7 @@ def test_df_flex_cmp_constant_return_types(self, opname):
325325
const = 2
326326

327327
result = getattr(df, opname)(const).dtypes.value_counts()
328-
expected = pd.Series([2], index=[np.dtype(bool)], dtype="Int64")
329-
tm.assert_series_equal(result, expected)
328+
tm.assert_series_equal(result, pd.Series([2], index=[np.dtype(bool)]))
330329

331330
@pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"])
332331
def test_df_flex_cmp_constant_return_types_empty(self, opname):
@@ -336,8 +335,7 @@ def test_df_flex_cmp_constant_return_types_empty(self, opname):
336335

337336
empty = df.iloc[:0]
338337
result = getattr(empty, opname)(const).dtypes.value_counts()
339-
expected = pd.Series([2], index=[np.dtype(bool)], dtype="Int64")
340-
tm.assert_series_equal(result, expected)
338+
tm.assert_series_equal(result, pd.Series([2], index=[np.dtype(bool)]))
341339

342340

343341
# -------------------------------------------------------------------

pandas/tests/indexes/datetimes/test_ops.py

+4-3
Original file line numberDiff line numberDiff line change
@@ -133,7 +133,8 @@ def test_value_counts_unique(self, tz_naive_fixture):
133133
idx = DatetimeIndex(np.repeat(idx.values, range(1, len(idx) + 1)), tz=tz)
134134

135135
exp_idx = pd.date_range("2011-01-01 18:00", freq="-1H", periods=10, tz=tz)
136-
expected = Series(range(10, 0, -1), index=exp_idx, dtype="Int64")
136+
expected = Series(range(10, 0, -1), index=exp_idx, dtype="int64")
137+
expected.index._set_freq(None)
137138

138139
for obj in [idx, Series(idx)]:
139140

@@ -156,13 +157,13 @@ def test_value_counts_unique(self, tz_naive_fixture):
156157
)
157158

158159
exp_idx = DatetimeIndex(["2013-01-01 09:00", "2013-01-01 08:00"], tz=tz)
159-
expected = Series([3, 2], index=exp_idx, dtype="Int64")
160+
expected = Series([3, 2], index=exp_idx)
160161

161162
for obj in [idx, Series(idx)]:
162163
tm.assert_series_equal(obj.value_counts(), expected)
163164

164165
exp_idx = DatetimeIndex(["2013-01-01 09:00", "2013-01-01 08:00", pd.NaT], tz=tz)
165-
expected = Series([3, 2, 1], index=exp_idx, dtype="Int64")
166+
expected = Series([3, 2, 1], index=exp_idx)
166167

167168
for obj in [idx, Series(idx)]:
168169
tm.assert_series_equal(obj.value_counts(dropna=False), expected)

pandas/tests/indexes/period/test_ops.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -47,7 +47,7 @@ def test_value_counts_unique(self):
4747
],
4848
freq="H",
4949
)
50-
expected = Series(range(10, 0, -1), index=exp_idx, dtype="Int64")
50+
expected = Series(range(10, 0, -1), index=exp_idx, dtype="int64")
5151

5252
for obj in [idx, Series(idx)]:
5353
tm.assert_series_equal(obj.value_counts(), expected)
@@ -68,13 +68,13 @@ def test_value_counts_unique(self):
6868
)
6969

7070
exp_idx = PeriodIndex(["2013-01-01 09:00", "2013-01-01 08:00"], freq="H")
71-
expected = Series([3, 2], index=exp_idx, dtype="Int64")
71+
expected = Series([3, 2], index=exp_idx)
7272

7373
for obj in [idx, Series(idx)]:
7474
tm.assert_series_equal(obj.value_counts(), expected)
7575

7676
exp_idx = PeriodIndex(["2013-01-01 09:00", "2013-01-01 08:00", NaT], freq="H")
77-
expected = Series([3, 2, 1], index=exp_idx, dtype="Int64")
77+
expected = Series([3, 2, 1], index=exp_idx)
7878

7979
for obj in [idx, Series(idx)]:
8080
tm.assert_series_equal(obj.value_counts(dropna=False), expected)

pandas/tests/indexes/timedeltas/test_ops.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ def test_value_counts_unique(self):
1818
idx = TimedeltaIndex(np.repeat(idx.values, range(1, len(idx) + 1)))
1919

2020
exp_idx = timedelta_range("1 days 18:00:00", freq="-1H", periods=10)
21-
expected = Series(range(10, 0, -1), index=exp_idx, dtype="Int64")
21+
expected = Series(range(10, 0, -1), index=exp_idx, dtype="int64")
2222

2323
for obj in [idx, Series(idx)]:
2424
tm.assert_series_equal(obj.value_counts(), expected)
@@ -38,13 +38,13 @@ def test_value_counts_unique(self):
3838
)
3939

4040
exp_idx = TimedeltaIndex(["1 days 09:00:00", "1 days 08:00:00"])
41-
expected = Series([3, 2], index=exp_idx, dtype="Int64")
41+
expected = Series([3, 2], index=exp_idx)
4242

4343
for obj in [idx, Series(idx)]:
4444
tm.assert_series_equal(obj.value_counts(), expected)
4545

4646
exp_idx = TimedeltaIndex(["1 days 09:00:00", "1 days 08:00:00", pd.NaT])
47-
expected = Series([3, 2, 1], index=exp_idx, dtype="Int64")
47+
expected = Series([3, 2, 1], index=exp_idx)
4848

4949
for obj in [idx, Series(idx)]:
5050
tm.assert_series_equal(obj.value_counts(dropna=False), expected)

pandas/tests/io/pytables/test_store.py

+1-2
Original file line numberDiff line numberDiff line change
@@ -1992,8 +1992,7 @@ def test_table_values_dtypes_roundtrip(self, setup_path):
19921992
"int64": 1,
19931993
"object": 1,
19941994
"datetime64[ns]": 2,
1995-
},
1996-
dtype="Int64",
1995+
}
19971996
)
19981997
result = result.sort_index()
19991998
expected = expected.sort_index()

0 commit comments

Comments
 (0)