@@ -30,7 +30,7 @@ def test_value_counts(index_or_series_obj):
30
30
result = obj .value_counts ()
31
31
32
32
counter = collections .Counter (obj )
33
- expected = pd .Series (dict (counter .most_common ()), dtype = "Int64" , name = obj .name )
33
+ expected = pd .Series (dict (counter .most_common ()), dtype = np . int64 , name = obj .name )
34
34
expected .index = expected .index .astype (obj .dtype )
35
35
if isinstance (obj , pd .MultiIndex ):
36
36
expected .index = pd .Index (expected .index )
@@ -67,7 +67,7 @@ def test_value_counts_null(null_obj, index_or_series_obj):
67
67
# because np.nan == np.nan is False, but None == None is True
68
68
# np.nan would be duplicated, whereas None wouldn't
69
69
counter = collections .Counter (obj .dropna ())
70
- expected = pd .Series (dict (counter .most_common ()), dtype = "Int64" )
70
+ expected = pd .Series (dict (counter .most_common ()), dtype = np . int64 )
71
71
expected .index = expected .index .astype (obj .dtype )
72
72
73
73
result = obj .value_counts ()
@@ -80,7 +80,7 @@ def test_value_counts_null(null_obj, index_or_series_obj):
80
80
81
81
# can't use expected[null_obj] = 3 as
82
82
# IntervalIndex doesn't allow assignment
83
- new_entry = pd .Series ({np .nan : 3 }, dtype = "Int64" )
83
+ new_entry = pd .Series ({np .nan : 3 }, dtype = np . int64 )
84
84
expected = expected .append (new_entry )
85
85
86
86
result = obj .value_counts (dropna = False )
@@ -96,7 +96,7 @@ def test_value_counts_inferred(index_or_series):
96
96
klass = index_or_series
97
97
s_values = ["a" , "b" , "b" , "b" , "b" , "c" , "d" , "d" , "a" , "a" ]
98
98
s = klass (s_values )
99
- expected = Series ([4 , 3 , 2 , 1 ], index = ["b" , "a" , "d" , "c" ], dtype = "Int64" )
99
+ expected = Series ([4 , 3 , 2 , 1 ], index = ["b" , "a" , "d" , "c" ])
100
100
tm .assert_series_equal (s .value_counts (), expected )
101
101
102
102
if isinstance (s , Index ):
@@ -110,17 +110,17 @@ def test_value_counts_inferred(index_or_series):
110
110
# don't sort, have to sort after the fact as not sorting is
111
111
# platform-dep
112
112
hist = s .value_counts (sort = False ).sort_values ()
113
- expected = Series ([3 , 1 , 4 , 2 ], index = list ("acbd" ), dtype = "Int64" ).sort_values ()
113
+ expected = Series ([3 , 1 , 4 , 2 ], index = list ("acbd" )).sort_values ()
114
114
tm .assert_series_equal (hist , expected )
115
115
116
116
# sort ascending
117
117
hist = s .value_counts (ascending = True )
118
- expected = Series ([1 , 2 , 3 , 4 ], index = list ("cdab" ), dtype = "Int64" )
118
+ expected = Series ([1 , 2 , 3 , 4 ], index = list ("cdab" ))
119
119
tm .assert_series_equal (hist , expected )
120
120
121
121
# relative histogram.
122
122
hist = s .value_counts (normalize = True )
123
- expected = Series ([0.4 , 0.3 , 0.2 , 0.1 ], index = ["b" , "a" , "d" , "c" ], dtype = "float64" )
123
+ expected = Series ([0.4 , 0.3 , 0.2 , 0.1 ], index = ["b" , "a" , "d" , "c" ])
124
124
tm .assert_series_equal (hist , expected )
125
125
126
126
@@ -136,41 +136,39 @@ def test_value_counts_bins(index_or_series):
136
136
137
137
s1 = Series ([1 , 1 , 2 , 3 ])
138
138
res1 = s1 .value_counts (bins = 1 )
139
- exp1 = Series ({Interval (0.997 , 3.0 ): 4 }, dtype = "Int64" )
139
+ exp1 = Series ({Interval (0.997 , 3.0 ): 4 })
140
140
tm .assert_series_equal (res1 , exp1 )
141
141
res1n = s1 .value_counts (bins = 1 , normalize = True )
142
- exp1n = Series ({Interval (0.997 , 3.0 ): 1.0 }, dtype = "float64" )
142
+ exp1n = Series ({Interval (0.997 , 3.0 ): 1.0 })
143
143
tm .assert_series_equal (res1n , exp1n )
144
144
145
145
if isinstance (s1 , Index ):
146
146
tm .assert_index_equal (s1 .unique (), Index ([1 , 2 , 3 ]))
147
147
else :
148
- exp = np .array ([1 , 2 , 3 ], dtype = " int64" )
148
+ exp = np .array ([1 , 2 , 3 ], dtype = np . int64 )
149
149
tm .assert_numpy_array_equal (s1 .unique (), exp )
150
150
151
151
assert s1 .nunique () == 3
152
152
153
153
# these return the same
154
154
res4 = s1 .value_counts (bins = 4 , dropna = True )
155
155
intervals = IntervalIndex .from_breaks ([0.997 , 1.5 , 2.0 , 2.5 , 3.0 ])
156
- exp4 = Series ([2 , 1 , 1 , 0 ], index = intervals .take ([0 , 3 , 1 , 2 ]), dtype = "Int64" )
156
+ exp4 = Series ([2 , 1 , 1 , 0 ], index = intervals .take ([0 , 3 , 1 , 2 ]))
157
157
tm .assert_series_equal (res4 , exp4 )
158
158
159
159
res4 = s1 .value_counts (bins = 4 , dropna = False )
160
160
intervals = IntervalIndex .from_breaks ([0.997 , 1.5 , 2.0 , 2.5 , 3.0 ])
161
- exp4 = Series ([2 , 1 , 1 , 0 ], index = intervals .take ([0 , 3 , 1 , 2 ]), dtype = "Int64" )
161
+ exp4 = Series ([2 , 1 , 1 , 0 ], index = intervals .take ([0 , 3 , 1 , 2 ]))
162
162
tm .assert_series_equal (res4 , exp4 )
163
163
164
164
res4n = s1 .value_counts (bins = 4 , normalize = True )
165
- exp4n = Series (
166
- [0.5 , 0.25 , 0.25 , 0 ], index = intervals .take ([0 , 3 , 1 , 2 ]), dtype = "float64"
167
- )
165
+ exp4n = Series ([0.5 , 0.25 , 0.25 , 0 ], index = intervals .take ([0 , 3 , 1 , 2 ]))
168
166
tm .assert_series_equal (res4n , exp4n )
169
167
170
168
# handle NA's properly
171
169
s_values = ["a" , "b" , "b" , "b" , np .nan , np .nan , "d" , "d" , "a" , "a" , "b" ]
172
170
s = klass (s_values )
173
- expected = Series (data = [4 , 3 , 2 ], index = ["b" , "a" , "d" ], dtype = "Int64" )
171
+ expected = Series ([4 , 3 , 2 ], index = ["b" , "a" , "d" ])
174
172
tm .assert_series_equal (s .value_counts (), expected )
175
173
176
174
if isinstance (s , Index ):
@@ -182,7 +180,7 @@ def test_value_counts_bins(index_or_series):
182
180
assert s .nunique () == 3
183
181
184
182
s = klass ({}) if klass is dict else klass ({}, dtype = object )
185
- expected = Series ([], dtype = "Int64" )
183
+ expected = Series ([], dtype = np . int64 )
186
184
tm .assert_series_equal (s .value_counts (), expected , check_index_type = False )
187
185
# returned dtype differs depending on original
188
186
if isinstance (s , Index ):
@@ -218,7 +216,7 @@ def test_value_counts_datetime64(index_or_series):
218
216
idx = pd .to_datetime (
219
217
["2010-01-01 00:00:00" , "2008-09-09 00:00:00" , "2009-01-01 00:00:00" ]
220
218
)
221
- expected_s = Series ([3 , 2 , 1 ], index = idx , dtype = "Int64" )
219
+ expected_s = Series ([3 , 2 , 1 ], index = idx )
222
220
tm .assert_series_equal (s .value_counts (), expected_s )
223
221
224
222
expected = np_array_datetime64_compat (
@@ -242,7 +240,7 @@ def test_value_counts_datetime64(index_or_series):
242
240
243
241
result = s .value_counts (dropna = False )
244
242
expected_s [pd .NaT ] = 1
245
- tm .assert_series_equal (result , expected_s . astype ( "Int64" ) )
243
+ tm .assert_series_equal (result , expected_s )
246
244
247
245
unique = s .unique ()
248
246
assert unique .dtype == "datetime64[ns]"
@@ -263,7 +261,7 @@ def test_value_counts_datetime64(index_or_series):
263
261
td = klass (td , name = "dt" )
264
262
265
263
result = td .value_counts ()
266
- expected_s = Series ([6 ], index = [Timedelta ("1day" )], name = "dt" , dtype = "Int64" )
264
+ expected_s = Series ([6 ], index = [Timedelta ("1day" )], name = "dt" )
267
265
tm .assert_series_equal (result , expected_s )
268
266
269
267
expected = TimedeltaIndex (["1 days" ], name = "dt" )
0 commit comments