File tree 2 files changed +21
-3
lines changed
2 files changed +21
-3
lines changed Original file line number Diff line number Diff line change @@ -284,12 +284,9 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
284
284
-i " pandas.api.types.is_iterator PR07,SA01" \
285
285
-i " pandas.api.types.is_list_like SA01" \
286
286
-i " pandas.api.types.is_named_tuple PR07,SA01" \
287
- -i " pandas.api.types.is_numeric_dtype SA01" \
288
287
-i " pandas.api.types.is_object_dtype SA01" \
289
- -i " pandas.api.types.is_period_dtype SA01" \
290
288
-i " pandas.api.types.is_re PR07,SA01" \
291
289
-i " pandas.api.types.is_re_compilable PR07,SA01" \
292
- -i " pandas.api.types.is_timedelta64_ns_dtype SA01" \
293
290
-i " pandas.api.types.pandas_dtype PR07,RT03,SA01" \
294
291
-i " pandas.arrays.ArrowExtensionArray PR07,SA01" \
295
292
-i " pandas.arrays.BooleanArray SA01" \
Original file line number Diff line number Diff line change @@ -412,6 +412,13 @@ def is_period_dtype(arr_or_dtype) -> bool:
412
412
boolean
413
413
Whether or not the array-like or dtype is of the Period dtype.
414
414
415
+ See Also
416
+ --------
417
+ api.types.is_timedelta64_ns_dtype : Check whether the provided array or dtype is
418
+ of the timedelta64[ns] dtype.
419
+ api.types.is_timedelta64_dtype: Check whether an array-like or dtype
420
+ is of the timedelta64 dtype.
421
+
415
422
Examples
416
423
--------
417
424
>>> from pandas.core.dtypes.common import is_period_dtype
@@ -1021,6 +1028,11 @@ def is_timedelta64_ns_dtype(arr_or_dtype) -> bool:
1021
1028
boolean
1022
1029
Whether or not the array or dtype is of the timedelta64[ns] dtype.
1023
1030
1031
+ See Also
1032
+ --------
1033
+ api.types.is_timedelta64_dtype: Check whether an array-like or dtype
1034
+ is of the timedelta64 dtype.
1035
+
1024
1036
Examples
1025
1037
--------
1026
1038
>>> from pandas.core.dtypes.common import is_timedelta64_ns_dtype
@@ -1140,6 +1152,15 @@ def is_numeric_dtype(arr_or_dtype) -> bool:
1140
1152
boolean
1141
1153
Whether or not the array or dtype is of a numeric dtype.
1142
1154
1155
+ See Also
1156
+ --------
1157
+ api.types.is_integer_dtype: Check whether the provided array or dtype
1158
+ is of an integer dtype.
1159
+ api.types.is_unsigned_integer_dtype: Check whether the provided array
1160
+ or dtype is of an unsigned integer dtype.
1161
+ api.types.is_signed_integer_dtype: Check whether the provided array
1162
+ or dtype is of an signed integer dtype.
1163
+
1143
1164
Examples
1144
1165
--------
1145
1166
>>> from pandas.api.types import is_numeric_dtype
You can’t perform that action at this time.
0 commit comments