|
1 |
| -import warnings |
2 |
| -from string import ascii_letters |
3 |
| -from itertools import product |
4 | 1 | from functools import partial
|
| 2 | +from itertools import product |
| 3 | +from string import ascii_letters |
| 4 | +import warnings |
5 | 5 |
|
6 | 6 | import numpy as np
|
7 |
| -from pandas import (DataFrame, Series, MultiIndex, date_range, period_range, |
8 |
| - TimeGrouper, Categorical, Timestamp) |
| 7 | + |
| 8 | +from pandas import ( |
| 9 | + Categorical, DataFrame, MultiIndex, Series, TimeGrouper, Timestamp, |
| 10 | + date_range, period_range) |
9 | 11 | import pandas.util.testing as tm
|
10 | 12 |
|
| 13 | +from .pandas_vb_common import setup # noqa: F401 |
11 | 14 |
|
12 | 15 | method_blacklist = {
|
13 | 16 | 'object': {'median', 'prod', 'sem', 'cumsum', 'sum', 'cummin', 'mean',
|
@@ -210,7 +213,7 @@ def time_multi_int_nunique(self, df):
|
210 | 213 |
|
211 | 214 | class AggFunctions(object):
|
212 | 215 |
|
213 |
| - def setup_cache(): |
| 216 | + def setup_cache(self): |
214 | 217 | N = 10**5
|
215 | 218 | fac1 = np.array(['A', 'B', 'C'], dtype='O')
|
216 | 219 | fac2 = np.array(['one', 'two'], dtype='O')
|
@@ -535,6 +538,3 @@ def setup(self):
|
535 | 538 |
|
536 | 539 | def time_first(self):
|
537 | 540 | self.df_nans.groupby('key').transform('first')
|
538 |
| - |
539 |
| - |
540 |
| -from .pandas_vb_common import setup # noqa: F401 |
0 commit comments