|
| 1 | +import operator |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import pytest |
| 5 | + |
| 6 | +import pandas as pd |
| 7 | +import pandas.util.testing as tm |
| 8 | +from .base import BaseExtensionTests |
| 9 | + |
| 10 | + |
| 11 | +class BaseSetitemTests(BaseExtensionTests): |
| 12 | + def test_setitem_scalar_series(self, data): |
| 13 | + arr = pd.Series(data) |
| 14 | + arr[0] = data[1] |
| 15 | + assert arr[0] == data[1] |
| 16 | + |
| 17 | + def test_setitem_sequence(self, data): |
| 18 | + arr = pd.Series(data) |
| 19 | + original = data.copy() |
| 20 | + |
| 21 | + arr[[0, 1]] = [data[1], data[0]] |
| 22 | + assert arr[0] == original[1] |
| 23 | + assert arr[1] == original[0] |
| 24 | + |
| 25 | + @pytest.mark.parametrize('as_array', [True, False]) |
| 26 | + def test_setitem_sequence_mismatched_length_raises(self, data, as_array): |
| 27 | + ser = pd.Series(data) |
| 28 | + value = [data[0]] |
| 29 | + if as_array: |
| 30 | + value = type(data)(value) |
| 31 | + |
| 32 | + xpr = 'cannot set using a {} indexer with a different length' |
| 33 | + with tm.assert_raises_regex(ValueError, xpr.format('list-like')): |
| 34 | + ser[[0, 1]] = value |
| 35 | + |
| 36 | + with tm.assert_raises_regex(ValueError, xpr.format('slice')): |
| 37 | + ser[slice(3)] = value |
| 38 | + |
| 39 | + def test_setitem_empty_indxer(self, data): |
| 40 | + ser = pd.Series(data) |
| 41 | + original = ser.copy() |
| 42 | + ser[[]] = [] |
| 43 | + self.assert_series_equal(ser, original) |
| 44 | + |
| 45 | + def test_setitem_sequence_broadcasts(self, data): |
| 46 | + arr = pd.Series(data) |
| 47 | + |
| 48 | + arr[[0, 1]] = data[2] |
| 49 | + assert arr[0] == data[2] |
| 50 | + assert arr[1] == data[2] |
| 51 | + |
| 52 | + @pytest.mark.parametrize('setter', ['loc', 'iloc']) |
| 53 | + def test_setitem_scalar(self, data, setter): |
| 54 | + arr = pd.Series(data) |
| 55 | + setter = getattr(arr, setter) |
| 56 | + operator.setitem(setter, 0, data[1]) |
| 57 | + assert arr[0] == data[1] |
| 58 | + |
| 59 | + def test_setitem_loc_scalar_mixed(self, data): |
| 60 | + df = pd.DataFrame({"A": np.arange(len(data)), "B": data}) |
| 61 | + df.loc[0, 'B'] = data[1] |
| 62 | + assert df.loc[0, 'B'] == data[1] |
| 63 | + |
| 64 | + def test_setitem_loc_scalar_single(self, data): |
| 65 | + df = pd.DataFrame({"B": data}) |
| 66 | + df.loc[10, 'B'] = data[1] |
| 67 | + assert df.loc[10, 'B'] == data[1] |
| 68 | + |
| 69 | + def test_setitem_loc_scalar_multiple_homogoneous(self, data): |
| 70 | + df = pd.DataFrame({"A": data, "B": data}) |
| 71 | + df.loc[10, 'B'] = data[1] |
| 72 | + assert df.loc[10, 'B'] == data[1] |
| 73 | + |
| 74 | + def test_setitem_iloc_scalar_mixed(self, data): |
| 75 | + df = pd.DataFrame({"A": np.arange(len(data)), "B": data}) |
| 76 | + df.iloc[0, 1] = data[1] |
| 77 | + assert df.loc[0, 'B'] == data[1] |
| 78 | + |
| 79 | + def test_setitem_iloc_scalar_single(self, data): |
| 80 | + df = pd.DataFrame({"B": data}) |
| 81 | + df.iloc[10, 0] = data[1] |
| 82 | + assert df.loc[10, 'B'] == data[1] |
| 83 | + |
| 84 | + def test_setitem_iloc_scalar_multiple_homogoneous(self, data): |
| 85 | + df = pd.DataFrame({"A": data, "B": data}) |
| 86 | + df.iloc[10, 1] = data[1] |
| 87 | + assert df.loc[10, 'B'] == data[1] |
| 88 | + |
| 89 | + @pytest.mark.parametrize('as_callable', [True, False]) |
| 90 | + @pytest.mark.parametrize('setter', ['loc', None]) |
| 91 | + def test_setitem_mask_aligned(self, data, as_callable, setter): |
| 92 | + ser = pd.Series(data) |
| 93 | + mask = np.zeros(len(data), dtype=bool) |
| 94 | + mask[:2] = True |
| 95 | + |
| 96 | + if as_callable: |
| 97 | + mask2 = lambda x: mask |
| 98 | + else: |
| 99 | + mask2 = mask |
| 100 | + |
| 101 | + if setter: |
| 102 | + # loc |
| 103 | + target = getattr(ser, setter) |
| 104 | + else: |
| 105 | + # Series.__setitem__ |
| 106 | + target = ser |
| 107 | + |
| 108 | + operator.setitem(target, mask2, data[5:7]) |
| 109 | + |
| 110 | + ser[mask2] = data[5:7] |
| 111 | + assert ser[0] == data[5] |
| 112 | + assert ser[1] == data[6] |
| 113 | + |
| 114 | + @pytest.mark.parametrize('setter', ['loc', None]) |
| 115 | + def test_setitem_mask_broadcast(self, data, setter): |
| 116 | + ser = pd.Series(data) |
| 117 | + mask = np.zeros(len(data), dtype=bool) |
| 118 | + mask[:2] = True |
| 119 | + |
| 120 | + if setter: # loc |
| 121 | + target = getattr(ser, setter) |
| 122 | + else: # __setitem__ |
| 123 | + target = ser |
| 124 | + |
| 125 | + operator.setitem(target, mask, data[10]) |
| 126 | + assert ser[0] == data[10] |
| 127 | + assert ser[1] == data[10] |
| 128 | + |
| 129 | + def test_setitem_expand_columns(self, data): |
| 130 | + df = pd.DataFrame({"A": data}) |
| 131 | + result = df.copy() |
| 132 | + result['B'] = 1 |
| 133 | + expected = pd.DataFrame({"A": data, "B": [1] * len(data)}) |
| 134 | + self.assert_frame_equal(result, expected) |
| 135 | + |
| 136 | + result = df.copy() |
| 137 | + result.loc[:, 'B'] = 1 |
| 138 | + self.assert_frame_equal(result, expected) |
| 139 | + |
| 140 | + # overwrite with new type |
| 141 | + result['B'] = data |
| 142 | + expected = pd.DataFrame({"A": data, "B": data}) |
| 143 | + self.assert_frame_equal(result, expected) |
| 144 | + |
| 145 | + def test_setitem_expand_with_extension(self, data): |
| 146 | + df = pd.DataFrame({"A": [1] * len(data)}) |
| 147 | + result = df.copy() |
| 148 | + result['B'] = data |
| 149 | + expected = pd.DataFrame({"A": [1] * len(data), "B": data}) |
| 150 | + self.assert_frame_equal(result, expected) |
| 151 | + |
| 152 | + result = df.copy() |
| 153 | + result.loc[:, 'B'] = data |
| 154 | + self.assert_frame_equal(result, expected) |
| 155 | + |
| 156 | + def test_setitem_frame_invalid_length(self, data): |
| 157 | + df = pd.DataFrame({"A": [1] * len(data)}) |
| 158 | + xpr = "Length of values does not match length of index" |
| 159 | + with tm.assert_raises_regex(ValueError, xpr): |
| 160 | + df['B'] = data[:5] |
| 161 | + |
| 162 | + @pytest.mark.xfail(reason="GH-20441: setitem on extension types.") |
| 163 | + def test_setitem_tuple_index(self, data): |
| 164 | + s = pd.Series(data[:2], index=[(0, 0), (0, 1)]) |
| 165 | + expected = pd.Series(data.take([1, 1]), index=s.index) |
| 166 | + s[(0, 1)] = data[1] |
| 167 | + self.assert_series_equal(s, expected) |
0 commit comments