@@ -6206,14 +6206,72 @@ def all(
6206
6206
)
6207
6207
6208
6208
@deprecate_nonkeyword_arguments (version = "3.0" , allowed_args = ["self" ], name = "min" )
6209
- @doc (make_doc ("min" , ndim = 1 ))
6210
6209
def min (
6211
6210
self ,
6212
6211
axis : Axis | None = 0 ,
6213
6212
skipna : bool = True ,
6214
6213
numeric_only : bool = False ,
6215
6214
** kwargs ,
6216
6215
):
6216
+ """
6217
+ Return the minimum of the values over the requested axis.
6218
+
6219
+ If you want the *index* of the minimum, use ``idxmin``.
6220
+ This is the equivalent of the ``numpy.ndarray`` method ``argmin``.
6221
+
6222
+ Parameters
6223
+ ----------
6224
+ axis : {index (0)}
6225
+ Axis for the function to be applied on.
6226
+ For `Series` this parameter is unused and defaults to 0.
6227
+
6228
+ For DataFrames, specifying ``axis=None`` will apply the aggregation
6229
+ across both axes.
6230
+
6231
+ .. versionadded:: 2.0.0
6232
+
6233
+ skipna : bool, default True
6234
+ Exclude NA/null values when computing the result.
6235
+ numeric_only : bool, default False
6236
+ Include only float, int, boolean columns.
6237
+ **kwargs
6238
+ Additional keyword arguments to be passed to the function.
6239
+
6240
+ Returns
6241
+ -------
6242
+ scalar or Series (if level specified)
6243
+ The maximum of the values in the Series.
6244
+
6245
+ See Also
6246
+ --------
6247
+ numpy.min : Equivalent numpy function for arrays.
6248
+ Series.min : Return the minimum.
6249
+ Series.max : Return the maximum.
6250
+ Series.idxmin : Return the index of the minimum.
6251
+ Series.idxmax : Return the index of the maximum.
6252
+ DataFrame.min : Return the minimum over the requested axis.
6253
+ DataFrame.max : Return the maximum over the requested axis.
6254
+ DataFrame.idxmin : Return the index of the minimum over the requested axis.
6255
+ DataFrame.idxmax : Return the index of the maximum over the requested axis.
6256
+
6257
+ Examples
6258
+ --------
6259
+ >>> idx = pd.MultiIndex.from_arrays(
6260
+ ... [["warm", "warm", "cold", "cold"], ["dog", "falcon", "fish", "spider"]],
6261
+ ... names=["blooded", "animal"],
6262
+ ... )
6263
+ >>> s = pd.Series([4, 2, 0, 8], name="legs", index=idx)
6264
+ >>> s
6265
+ blooded animal
6266
+ warm dog 4
6267
+ falcon 2
6268
+ cold fish 0
6269
+ spider 8
6270
+ Name: legs, dtype: int64
6271
+
6272
+ >>> s.min()
6273
+ 0
6274
+ """
6217
6275
return NDFrame .min (
6218
6276
self , axis = axis , skipna = skipna , numeric_only = numeric_only , ** kwargs
6219
6277
)
0 commit comments