@@ -7780,6 +7780,8 @@ def groupby(
7780
7780
For finer-tuned control, see hierarchical indexing documentation along
7781
7781
with the related stack/unstack methods.
7782
7782
7783
+ Reference :ref:`the user guide <reshaping.pivot>` for more examples.
7784
+
7783
7785
Examples
7784
7786
--------
7785
7787
>>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two',
@@ -7938,6 +7940,10 @@ def pivot(self, index=None, columns=None, values=None) -> DataFrame:
7938
7940
wide_to_long : Wide panel to long format. Less flexible but more
7939
7941
user-friendly than melt.
7940
7942
7943
+ Notes
7944
+ -----
7945
+ Reference :ref:`the user guide <reshaping.pivot>` for more examples.
7946
+
7941
7947
Examples
7942
7948
--------
7943
7949
>>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo",
@@ -8094,6 +8100,8 @@ def stack(self, level: Level = -1, dropna: bool = True):
8094
8100
vertically on top of each other (in the index of the
8095
8101
dataframe).
8096
8102
8103
+ Reference :ref:`the user guide <reshaping.stacking>` for more examples.
8104
+
8097
8105
Examples
8098
8106
--------
8099
8107
**Single level columns**
@@ -8273,6 +8281,8 @@ def explode(
8273
8281
result in a np.nan for that row. In addition, the ordering of rows in the
8274
8282
output will be non-deterministic when exploding sets.
8275
8283
8284
+ Reference :ref:`the user guide <reshaping.explode>` for more examples.
8285
+
8276
8286
Examples
8277
8287
--------
8278
8288
>>> df = pd.DataFrame({'A': [[0, 1, 2], 'foo', [], [3, 4]],
@@ -8372,6 +8382,10 @@ def unstack(self, level: Level = -1, fill_value=None):
8372
8382
DataFrame.stack : Pivot a level of the column labels (inverse operation
8373
8383
from `unstack`).
8374
8384
8385
+ Notes
8386
+ -----
8387
+ Reference :ref:`the user guide <reshaping.stacking>` for more examples.
8388
+
8375
8389
Examples
8376
8390
--------
8377
8391
>>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'),
0 commit comments