Skip to content

Commit 1b5338e

Browse files
authored
DOC: fix URLs, formatting and typos (#45920)
1 parent c24a3c8 commit 1b5338e

File tree

4 files changed

+18
-17
lines changed

4 files changed

+18
-17
lines changed

pandas/core/generic.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -11443,7 +11443,7 @@ def _find_valid_index(self, *, how: str) -> Hashable | None:
1144311443
@doc(position="first", klass=_shared_doc_kwargs["klass"])
1144411444
def first_valid_index(self) -> Hashable | None:
1144511445
"""
11446-
Return index for {position} non-NA value or None, if no NA value is found.
11446+
Return index for {position} non-NA value or None, if no non-NA value is found.
1144711447
1144811448
Returns
1144911449
-------

pandas/plotting/_core.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -1371,7 +1371,7 @@ def kde(self, bw_method=None, ind=None, **kwargs):
13711371
`ind` number of equally spaced points are used.
13721372
**kwargs
13731373
Additional keyword arguments are documented in
1374-
:meth:`pandas.%(this-datatype)s.plot`.
1374+
:meth:`DataFrame.plot`.
13751375
13761376
Returns
13771377
-------

web/pandas/about/index.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -54,7 +54,7 @@ This will help ensure the success of development of _pandas_ as a world-class op
5454
series without losing data;
5555

5656
- Highly **optimized for performance**, with critical code paths written in
57-
[Cython](http://www.cython.org/) or C.
57+
[Cython](https://cython.org) or C.
5858

5959
- Python with *pandas* is in use in a wide variety of **academic and
6060
commercial** domains, including Finance, Neuroscience, Economics,

web/pandas/community/ecosystem.md

+15-14
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ modeling functionality that is out of pandas' scope. Statsmodels
2929
leverages pandas objects as the underlying data container for
3030
computation.
3131

32-
### [sklearn-pandas](https://github.com/paulgb/sklearn-pandas)
32+
### [sklearn-pandas](https://github.com/scikit-learn-contrib/sklearn-pandas)
3333

3434
Use pandas DataFrames in your [scikit-learn](https://scikit-learn.org/)
3535
ML pipeline.
@@ -60,7 +60,7 @@ top of the powerful Vega-Lite JSON specification. This elegant
6060
simplicity produces beautiful and effective visualizations with a
6161
minimal amount of code. Altair works with Pandas DataFrames.
6262

63-
### [Bokeh](https://bokeh.pydata.org)
63+
### [Bokeh](https://docs.bokeh.org)
6464

6565
Bokeh is a Python interactive visualization library for large datasets
6666
that natively uses the latest web technologies. Its goal is to provide
@@ -172,7 +172,7 @@ inspection and rich visualization capabilities of a scientific
172172
environment like MATLAB or Rstudio.
173173

174174
Its [Variable
175-
Explorer](https://docs.spyder-ide.org/variableexplorer.html) allows
175+
Explorer](https://docs.spyder-ide.org/current/panes/variableexplorer.html) allows
176176
users to view, manipulate and edit pandas `Index`, `Series`, and
177177
`DataFrame` objects like a "spreadsheet", including copying and
178178
modifying values, sorting, displaying a "heatmap", converting data
@@ -183,9 +183,9 @@ of plain text and binary files or the clipboard into a new pandas
183183
DataFrame via a sophisticated import wizard.
184184

185185
Most pandas classes, methods and data attributes can be autocompleted in
186-
Spyder's [Editor](https://docs.spyder-ide.org/editor.html) and [IPython
187-
Console](https://docs.spyder-ide.org/ipythonconsole.html), and Spyder's
188-
[Help pane](https://docs.spyder-ide.org/help.html) can retrieve and
186+
Spyder's [Editor](https://docs.spyder-ide.org/current/panes/editor.html) and [IPython
187+
Console](https://docs.spyder-ide.org/current/panes/ipythonconsole.html), and Spyder's
188+
[Help pane](https://docs.spyder-ide.org/current/panes/help.html) can retrieve and
189189
render Numpydoc documentation on pandas objects in rich text with Sphinx
190190
both automatically and on-demand.
191191

@@ -233,7 +233,7 @@ package requires valid credentials for this API (non free).
233233
### [pandaSDMX](https://pandasdmx.readthedocs.io)
234234

235235
pandaSDMX is a library to retrieve and acquire statistical data and
236-
metadata disseminated in [SDMX](https://www.sdmx.org) 2.1, an
236+
metadata disseminated in [SDMX](https://sdmx.org) 2.1, an
237237
ISO-standard widely used by institutions such as statistics offices,
238238
central banks, and international organisations. pandaSDMX can expose
239239
datasets and related structural metadata including data flows,
@@ -254,7 +254,7 @@ you can obtain for free on the FRED website.
254254

255255
## Domain specific
256256

257-
### [Geopandas](https://github.com/kjordahl/geopandas)
257+
### [Geopandas](https://github.com/geopandas/geopandas)
258258

259259
Geopandas extends pandas data objects to include geographic information
260260
which support geometric operations. If your work entails maps and
@@ -277,13 +277,13 @@ Blaze provides a standard API for doing computations with various
277277
in-memory and on-disk backends: NumPy, Pandas, SQLAlchemy, MongoDB,
278278
PyTables, PySpark.
279279

280-
### [Dask](https://dask.readthedocs.io/en/latest/)
280+
### [Dask](https://docs.dask.org)
281281

282282
Dask is a flexible parallel computing library for analytics. Dask
283283
provides a familiar `DataFrame` interface for out-of-core, parallel and
284284
distributed computing.
285285

286-
### [Dask-ML](https://dask-ml.readthedocs.io/en/latest/)
286+
### [Dask-ML](https://ml.dask.org)
287287

288288
Dask-ML enables parallel and distributed machine learning using Dask
289289
alongside existing machine learning libraries like Scikit-Learn,
@@ -303,7 +303,7 @@ packages such as PyTables, h5py, and pymongo to move data between non
303303
pandas formats. Its graph based approach is also extensible by end users
304304
for custom formats that may be too specific for the core of odo.
305305

306-
### [Ray](https://ray.readthedocs.io/en/latest/pandas_on_ray.html)
306+
### [Ray](https://docs.ray.io/en/latest/data/modin/index.html)
307307

308308
Pandas on Ray is an early stage DataFrame library that wraps Pandas and
309309
transparently distributes the data and computation. The user does not
@@ -320,14 +320,14 @@ Ray just like you would Pandas.
320320
import ray.dataframe as pd
321321
```
322322

323-
### [Vaex](https://docs.vaex.io/)
323+
### [Vaex](https://vaex.io/docs/)
324324

325325
Increasingly, packages are being built on top of pandas to address
326326
specific needs in data preparation, analysis and visualization. Vaex is
327327
a python library for Out-of-Core DataFrames (similar to Pandas), to
328328
visualize and explore big tabular datasets. It can calculate statistics
329329
such as mean, sum, count, standard deviation etc, on an N-dimensional
330-
grid up to a billion (10^9^) objects/rows per second. Visualization is
330+
grid up to a billion (10^9) objects/rows per second. Visualization is
331331
done using histograms, density plots and 3d volume rendering, allowing
332332
interactive exploration of big data. Vaex uses memory mapping, zero
333333
memory copy policy and lazy computations for best performance (no memory
@@ -338,7 +338,7 @@ wasted).
338338

339339
## Data cleaning and validation
340340

341-
### [pyjanitor](https://github.com/ericmjl/pyjanitor/)
341+
### [pyjanitor](https://github.com/pyjanitor-devs/pyjanitor)
342342

343343
Pyjanitor provides a clean API for cleaning data, using method chaining.
344344

@@ -388,6 +388,7 @@ authors to coordinate on the namespace.
388388
| [pint-pandas](https://github.com/hgrecco/pint-pandas) | `pint` | `Series`, `DataFrame` |
389389
| [composeml](https://github.com/alteryx/compose) | `slice` | `DataFrame` |
390390
| [woodwork](https://github.com/alteryx/woodwork) | `slice` | `Series`, `DataFrame` |
391+
391392
## Development tools
392393

393394
### [pandas-stubs](https://github.com/VirtusLab/pandas-stubs)

0 commit comments

Comments
 (0)