@@ -29,7 +29,7 @@ modeling functionality that is out of pandas' scope. Statsmodels
29
29
leverages pandas objects as the underlying data container for
30
30
computation.
31
31
32
- ### [ sklearn-pandas] ( https://github.com/paulgb /sklearn-pandas )
32
+ ### [ sklearn-pandas] ( https://github.com/scikit-learn-contrib /sklearn-pandas )
33
33
34
34
Use pandas DataFrames in your [ scikit-learn] ( https://scikit-learn.org/ )
35
35
ML pipeline.
@@ -60,7 +60,7 @@ top of the powerful Vega-Lite JSON specification. This elegant
60
60
simplicity produces beautiful and effective visualizations with a
61
61
minimal amount of code. Altair works with Pandas DataFrames.
62
62
63
- ### [ Bokeh] ( https://bokeh.pydata .org )
63
+ ### [ Bokeh] ( https://docs.bokeh .org )
64
64
65
65
Bokeh is a Python interactive visualization library for large datasets
66
66
that natively uses the latest web technologies. Its goal is to provide
@@ -172,7 +172,7 @@ inspection and rich visualization capabilities of a scientific
172
172
environment like MATLAB or Rstudio.
173
173
174
174
Its [ Variable
175
- Explorer] ( https://docs.spyder-ide.org/variableexplorer.html ) allows
175
+ Explorer] ( https://docs.spyder-ide.org/current/panes/ variableexplorer.html ) allows
176
176
users to view, manipulate and edit pandas ` Index ` , ` Series ` , and
177
177
` DataFrame ` objects like a "spreadsheet", including copying and
178
178
modifying values, sorting, displaying a "heatmap", converting data
@@ -183,9 +183,9 @@ of plain text and binary files or the clipboard into a new pandas
183
183
DataFrame via a sophisticated import wizard.
184
184
185
185
Most pandas classes, methods and data attributes can be autocompleted in
186
- Spyder's [ Editor] ( https://docs.spyder-ide.org/editor.html ) and [ IPython
187
- Console] ( https://docs.spyder-ide.org/ipythonconsole.html ) , and Spyder's
188
- [ Help pane] ( https://docs.spyder-ide.org/help.html ) can retrieve and
186
+ Spyder's [ Editor] ( https://docs.spyder-ide.org/current/panes/ editor.html ) and [ IPython
187
+ Console] ( https://docs.spyder-ide.org/current/panes/ ipythonconsole.html ) , and Spyder's
188
+ [ Help pane] ( https://docs.spyder-ide.org/current/panes/ help.html ) can retrieve and
189
189
render Numpydoc documentation on pandas objects in rich text with Sphinx
190
190
both automatically and on-demand.
191
191
@@ -233,7 +233,7 @@ package requires valid credentials for this API (non free).
233
233
### [ pandaSDMX] ( https://pandasdmx.readthedocs.io )
234
234
235
235
pandaSDMX is a library to retrieve and acquire statistical data and
236
- metadata disseminated in [ SDMX] ( https://www. sdmx.org ) 2.1, an
236
+ metadata disseminated in [ SDMX] ( https://sdmx.org ) 2.1, an
237
237
ISO-standard widely used by institutions such as statistics offices,
238
238
central banks, and international organisations. pandaSDMX can expose
239
239
datasets and related structural metadata including data flows,
@@ -254,7 +254,7 @@ you can obtain for free on the FRED website.
254
254
255
255
## Domain specific
256
256
257
- ### [ Geopandas] ( https://github.com/kjordahl /geopandas )
257
+ ### [ Geopandas] ( https://github.com/geopandas /geopandas )
258
258
259
259
Geopandas extends pandas data objects to include geographic information
260
260
which support geometric operations. If your work entails maps and
@@ -277,13 +277,13 @@ Blaze provides a standard API for doing computations with various
277
277
in-memory and on-disk backends: NumPy, Pandas, SQLAlchemy, MongoDB,
278
278
PyTables, PySpark.
279
279
280
- ### [ Dask] ( https://dask.readthedocs.io/en/latest/ )
280
+ ### [ Dask] ( https://docs. dask.org )
281
281
282
282
Dask is a flexible parallel computing library for analytics. Dask
283
283
provides a familiar ` DataFrame ` interface for out-of-core, parallel and
284
284
distributed computing.
285
285
286
- ### [ Dask-ML] ( https://dask- ml.readthedocs.io/en/latest/ )
286
+ ### [ Dask-ML] ( https://ml.dask.org )
287
287
288
288
Dask-ML enables parallel and distributed machine learning using Dask
289
289
alongside existing machine learning libraries like Scikit-Learn,
@@ -303,7 +303,7 @@ packages such as PyTables, h5py, and pymongo to move data between non
303
303
pandas formats. Its graph based approach is also extensible by end users
304
304
for custom formats that may be too specific for the core of odo.
305
305
306
- ### [ Ray] ( https://ray.readthedocs. io/en/latest/pandas_on_ray .html )
306
+ ### [ Ray] ( https://docs. ray.io/en/latest/data/modin/index .html )
307
307
308
308
Pandas on Ray is an early stage DataFrame library that wraps Pandas and
309
309
transparently distributes the data and computation. The user does not
@@ -320,14 +320,14 @@ Ray just like you would Pandas.
320
320
import ray.dataframe as pd
321
321
```
322
322
323
- ### [ Vaex] ( https://docs. vaex.io/ )
323
+ ### [ Vaex] ( https://vaex.io/docs / )
324
324
325
325
Increasingly, packages are being built on top of pandas to address
326
326
specific needs in data preparation, analysis and visualization. Vaex is
327
327
a python library for Out-of-Core DataFrames (similar to Pandas), to
328
328
visualize and explore big tabular datasets. It can calculate statistics
329
329
such as mean, sum, count, standard deviation etc, on an N-dimensional
330
- grid up to a billion (10^9^ ) objects/rows per second. Visualization is
330
+ grid up to a billion (10^9) objects/rows per second. Visualization is
331
331
done using histograms, density plots and 3d volume rendering, allowing
332
332
interactive exploration of big data. Vaex uses memory mapping, zero
333
333
memory copy policy and lazy computations for best performance (no memory
@@ -338,7 +338,7 @@ wasted).
338
338
339
339
## Data cleaning and validation
340
340
341
- ### [ pyjanitor] ( https://github.com/ericmjl/ pyjanitor/ )
341
+ ### [ pyjanitor] ( https://github.com/pyjanitor-devs/pyjanitor )
342
342
343
343
Pyjanitor provides a clean API for cleaning data, using method chaining.
344
344
@@ -388,6 +388,7 @@ authors to coordinate on the namespace.
388
388
| [ pint-pandas] ( https://github.com/hgrecco/pint-pandas ) | ` pint ` | ` Series ` , ` DataFrame ` |
389
389
| [ composeml] ( https://github.com/alteryx/compose ) | ` slice ` | ` DataFrame ` |
390
390
| [ woodwork] ( https://github.com/alteryx/woodwork ) | ` slice ` | ` Series ` , ` DataFrame ` |
391
+
391
392
## Development tools
392
393
393
394
### [ pandas-stubs] ( https://github.com/VirtusLab/pandas-stubs )
0 commit comments