Skip to content

Commit 1511d3f

Browse files
committed
Merge PR #2755
2 parents 0033f0a + 7065ff0 commit 1511d3f

File tree

5 files changed

+1537
-1354
lines changed

5 files changed

+1537
-1354
lines changed

RELEASE.rst

+6
Original file line numberDiff line numberDiff line change
@@ -81,6 +81,12 @@ pandas 0.11.0
8181
- Fix some boolean indexing inconsistencies in Series __getitem__/__setitem__
8282
(GH2776_)
8383

84+
``HDFStore``
85+
86+
- Fix weird PyTables error when using too many selectors in a where
87+
- Provide dotted attribute access to ``get`` from stores (e.g. store.df == store['df'])
88+
- Internally, change all variables to be private-like (now have leading underscore)
89+
8490
.. _GH622: https://github.com/pydata/pandas/issues/622
8591
.. _GH797: https://github.com/pydata/pandas/issues/797
8692
.. _GH2778: https://github.com/pydata/pandas/issues/2778

doc/source/io.rst

+29
Original file line numberDiff line numberDiff line change
@@ -1021,6 +1021,9 @@ In a current or later Python session, you can retrieve stored objects:
10211021
# store.get('df') is an equivalent method
10221022
store['df']
10231023
1024+
# dotted (attribute) access provides get as well
1025+
store.df
1026+
10241027
Deletion of the object specified by the key
10251028

10261029
.. ipython:: python
@@ -1363,6 +1366,32 @@ Notes & Caveats
13631366
# we have provided a minimum minor_axis indexable size
13641367
store.root.wp_big_strings.table
13651368

1369+
DataTypes
1370+
~~~~~~~~~
1371+
1372+
``HDFStore`` will map an object dtype to the ``PyTables`` underlying dtype. This means the following types are known to work:
1373+
1374+
- floating : ``float64, float32, float16`` *(using* ``np.nan`` *to represent invalid values)*
1375+
- integer : ``int64, int32, int8, uint64, uint32, uint8``
1376+
- bool
1377+
- datetime64[ns] *(using* ``NaT`` *to represent invalid values)*
1378+
- object : ``strings`` *(using* ``np.nan`` *to represent invalid values)*
1379+
1380+
Currently, ``unicode`` and ``datetime`` columns (represented with a dtype of ``object``), **WILL FAIL**. In addition, even though a column may look like a ``datetime64[ns]``,
1381+
if it contains ``np.nan``, this **WILL FAIL**. You can try to convert datetimelike columns to proper ``datetime64[ns]`` columns, that possibily contain ``NaT`` to represent invalid values. (Some of these issues have been addressed and these conversion may not be necessary in future versions of pandas)
1382+
1383+
.. ipython:: python
1384+
1385+
import datetime
1386+
df = DataFrame(dict(datelike = Series([datetime.datetime(2001,1,1),datetime.datetime(2001,1,2),np.nan])))
1387+
df
1388+
df.dtypes
1389+
1390+
# to convert
1391+
df['datelike'] = Series(df['datelike'].values,dtype='M8[ns]')
1392+
df
1393+
df.dtypes
1394+
13661395
External Compatibility
13671396
~~~~~~~~~~~~~~~~~~~~~~
13681397

doc/source/v0.10.2.txt

+18
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,18 @@
1+
.. _whatsnew_0102:
2+
3+
v0.10.2 (February ??, 2013)
4+
---------------------------
5+
6+
This is a minor release from 0.10.1 and includes many new features and
7+
enhancements along with a large number of bug fixes. There are also a number of
8+
important API changes that long-time pandas users should pay close attention
9+
to.
10+
11+
**Enhancements**
12+
13+
- In ``HDFStore``, provide dotted attribute access to ``get`` from stores (e.g. store.df == store['df'])
14+
15+
See the `full release notes
16+
<https://github.com/pydata/pandas/blob/master/RELEASE.rst>`__ or issue tracker
17+
on GitHub for a complete list.
18+

0 commit comments

Comments
 (0)