@@ -80,135 +80,49 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
80
80
-i " pandas.CategoricalIndex.codes SA01" \
81
81
-i " pandas.CategoricalIndex.ordered SA01" \
82
82
-i " pandas.DataFrame.__dataframe__ SA01" \
83
- -i " pandas.DataFrame.__iter__ SA01" \
84
- -i " pandas.DataFrame.assign SA01" \
85
83
-i " pandas.DataFrame.at_time PR01" \
86
- -i " pandas.DataFrame.bfill SA01" \
87
- -i " pandas.DataFrame.columns SA01" \
88
- -i " pandas.DataFrame.copy SA01" \
89
- -i " pandas.DataFrame.droplevel SA01" \
90
- -i " pandas.DataFrame.dtypes SA01" \
91
- -i " pandas.DataFrame.ffill SA01" \
92
- -i " pandas.DataFrame.first_valid_index SA01" \
93
- -i " pandas.DataFrame.get SA01" \
94
- -i " pandas.DataFrame.hist RT03" \
95
- -i " pandas.DataFrame.infer_objects RT03" \
96
- -i " pandas.DataFrame.keys SA01" \
97
84
-i " pandas.DataFrame.kurt RT03,SA01" \
98
85
-i " pandas.DataFrame.kurtosis RT03,SA01" \
99
- -i " pandas.DataFrame.last_valid_index SA01" \
100
86
-i " pandas.DataFrame.max RT03" \
101
87
-i " pandas.DataFrame.mean RT03,SA01" \
102
88
-i " pandas.DataFrame.median RT03,SA01" \
103
89
-i " pandas.DataFrame.min RT03" \
104
90
-i " pandas.DataFrame.plot PR02,SA01" \
105
- -i " pandas.DataFrame.pop SA01" \
106
91
-i " pandas.DataFrame.prod RT03" \
107
92
-i " pandas.DataFrame.product RT03" \
108
- -i " pandas.DataFrame.reorder_levels SA01" \
109
93
-i " pandas.DataFrame.sem PR01,RT03,SA01" \
110
94
-i " pandas.DataFrame.skew RT03,SA01" \
111
- -i " pandas.DataFrame.sparse PR01,SA01" \
112
- -i " pandas.DataFrame.sparse.density SA01" \
113
- -i " pandas.DataFrame.sparse.from_spmatrix SA01" \
114
- -i " pandas.DataFrame.sparse.to_coo SA01" \
115
- -i " pandas.DataFrame.sparse.to_dense SA01" \
95
+ -i " pandas.DataFrame.sparse PR01" \
116
96
-i " pandas.DataFrame.std PR01,RT03,SA01" \
117
97
-i " pandas.DataFrame.sum RT03" \
118
98
-i " pandas.DataFrame.swaplevel SA01" \
119
- -i " pandas.DataFrame.to_feather SA01" \
120
99
-i " pandas.DataFrame.to_markdown SA01" \
121
- -i " pandas.DataFrame.to_parquet RT03" \
122
100
-i " pandas.DataFrame.var PR01,RT03,SA01" \
123
- -i " pandas.DatetimeIndex.ceil SA01" \
124
- -i " pandas.DatetimeIndex.date SA01" \
125
- -i " pandas.DatetimeIndex.day SA01" \
126
- -i " pandas.DatetimeIndex.day_name SA01" \
127
- -i " pandas.DatetimeIndex.day_of_year SA01" \
128
- -i " pandas.DatetimeIndex.dayofyear SA01" \
129
- -i " pandas.DatetimeIndex.floor SA01" \
130
- -i " pandas.DatetimeIndex.freqstr SA01" \
131
- -i " pandas.DatetimeIndex.hour SA01" \
132
101
-i " pandas.DatetimeIndex.indexer_at_time PR01,RT03" \
133
- -i " pandas.DatetimeIndex.indexer_between_time RT03" \
134
- -i " pandas.DatetimeIndex.inferred_freq SA01" \
135
- -i " pandas.DatetimeIndex.is_leap_year SA01" \
136
- -i " pandas.DatetimeIndex.microsecond SA01" \
137
- -i " pandas.DatetimeIndex.minute SA01" \
138
- -i " pandas.DatetimeIndex.month SA01" \
139
- -i " pandas.DatetimeIndex.month_name SA01" \
140
- -i " pandas.DatetimeIndex.nanosecond SA01" \
141
- -i " pandas.DatetimeIndex.quarter SA01" \
142
- -i " pandas.DatetimeIndex.round SA01" \
143
- -i " pandas.DatetimeIndex.second SA01" \
144
- -i " pandas.DatetimeIndex.snap PR01,RT03,SA01" \
145
- -i " pandas.DatetimeIndex.std PR01,RT03" \
146
- -i " pandas.DatetimeIndex.time SA01" \
147
- -i " pandas.DatetimeIndex.timetz SA01" \
102
+ -i " pandas.DatetimeIndex.snap PR01,RT03" \
148
103
-i " pandas.DatetimeIndex.to_period RT03" \
149
- -i " pandas.DatetimeIndex.to_pydatetime RT03,SA01" \
150
- -i " pandas.DatetimeIndex.tz SA01" \
151
- -i " pandas.DatetimeIndex.tz_convert RT03" \
152
- -i " pandas.DatetimeIndex.year SA01" \
153
- -i " pandas.DatetimeTZDtype SA01" \
154
- -i " pandas.DatetimeTZDtype.tz SA01" \
155
- -i " pandas.DatetimeTZDtype.unit SA01" \
156
- -i " pandas.Grouper PR02,SA01" \
157
- -i " pandas.HDFStore.append PR01,SA01" \
158
- -i " pandas.HDFStore.get SA01" \
159
- -i " pandas.HDFStore.groups SA01" \
160
- -i " pandas.HDFStore.info RT03,SA01" \
161
- -i " pandas.HDFStore.keys SA01" \
162
- -i " pandas.HDFStore.put PR01,SA01" \
163
- -i " pandas.HDFStore.select SA01" \
164
- -i " pandas.HDFStore.walk SA01" \
104
+ -i " pandas.Grouper PR02" \
165
105
-i " pandas.Index PR07" \
166
- -i " pandas.Index.T SA01" \
167
106
-i " pandas.Index.append PR07,RT03,SA01" \
168
- -i " pandas.Index.astype SA01" \
169
- -i " pandas.Index.copy PR07,SA01" \
170
107
-i " pandas.Index.difference PR07,RT03,SA01" \
171
- -i " pandas.Index.drop PR07,SA01" \
172
- -i " pandas.Index.drop_duplicates RT03" \
173
- -i " pandas.Index.droplevel RT03,SA01" \
174
- -i " pandas.Index.dropna RT03,SA01" \
175
- -i " pandas.Index.dtype SA01" \
176
108
-i " pandas.Index.duplicated RT03" \
177
- -i " pandas.Index.empty GL08" \
178
- -i " pandas.Index.equals SA01" \
179
- -i " pandas.Index.fillna RT03" \
180
109
-i " pandas.Index.get_indexer PR07,SA01" \
181
110
-i " pandas.Index.get_indexer_for PR01,SA01" \
182
111
-i " pandas.Index.get_indexer_non_unique PR07,SA01" \
183
112
-i " pandas.Index.get_loc PR07,RT03,SA01" \
184
- -i " pandas.Index.get_slice_bound PR07" \
185
- -i " pandas.Index.hasnans SA01" \
186
113
-i " pandas.Index.identical PR01,SA01" \
187
- -i " pandas.Index.inferred_type SA01" \
188
114
-i " pandas.Index.insert PR07,RT03,SA01" \
189
115
-i " pandas.Index.intersection PR07,RT03,SA01" \
190
- -i " pandas.Index.item SA01" \
191
116
-i " pandas.Index.join PR07,RT03,SA01" \
192
- -i " pandas.Index.map SA01" \
193
- -i " pandas.Index.memory_usage RT03" \
194
- -i " pandas.Index.name SA01" \
195
117
-i " pandas.Index.names GL08" \
196
- -i " pandas.Index.nbytes SA01" \
197
- -i " pandas.Index.ndim SA01" \
198
118
-i " pandas.Index.nunique RT03" \
199
119
-i " pandas.Index.putmask PR01,RT03" \
200
120
-i " pandas.Index.ravel PR01,RT03" \
201
- -i " pandas.Index.reindex PR07" \
202
- -i " pandas.Index.shape SA01" \
203
- -i " pandas.Index.size SA01" \
204
121
-i " pandas.Index.slice_indexer PR07,RT03,SA01" \
205
- -i " pandas.Index.slice_locs RT03" \
206
122
-i " pandas.Index.str PR01,SA01" \
207
123
-i " pandas.Index.symmetric_difference PR07,RT03,SA01" \
208
124
-i " pandas.Index.take PR01,PR07" \
209
- -i " pandas.Index.to_list RT03" \
210
125
-i " pandas.Index.union PR07,RT03,SA01" \
211
- -i " pandas.Index.unique RT03" \
212
126
-i " pandas.Index.view GL08" \
213
127
-i " pandas.Int16Dtype SA01" \
214
128
-i " pandas.Int32Dtype SA01" \
@@ -236,7 +150,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
236
150
-i " pandas.MultiIndex.append PR07,SA01" \
237
151
-i " pandas.MultiIndex.copy PR07,RT03,SA01" \
238
152
-i " pandas.MultiIndex.drop PR07,RT03,SA01" \
239
- -i " pandas.MultiIndex.droplevel RT03,SA01" \
240
153
-i " pandas.MultiIndex.dtypes SA01" \
241
154
-i " pandas.MultiIndex.get_indexer PR07,SA01" \
242
155
-i " pandas.MultiIndex.get_level_values SA01" \
@@ -277,7 +190,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
277
190
-i " pandas.PeriodIndex.dayofyear SA01" \
278
191
-i " pandas.PeriodIndex.days_in_month SA01" \
279
192
-i " pandas.PeriodIndex.daysinmonth SA01" \
280
- -i " pandas.PeriodIndex.freqstr SA01" \
281
193
-i " pandas.PeriodIndex.from_fields PR07,SA01" \
282
194
-i " pandas.PeriodIndex.from_ordinals SA01" \
283
195
-i " pandas.PeriodIndex.hour SA01" \
@@ -298,12 +210,10 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
298
210
-i " pandas.RangeIndex.step SA01" \
299
211
-i " pandas.RangeIndex.stop SA01" \
300
212
-i " pandas.Series SA01" \
301
- -i " pandas.Series.T SA01" \
302
213
-i " pandas.Series.__iter__ RT03,SA01" \
303
214
-i " pandas.Series.add PR07" \
304
215
-i " pandas.Series.at_time PR01" \
305
216
-i " pandas.Series.backfill PR01,SA01" \
306
- -i " pandas.Series.bfill SA01" \
307
217
-i " pandas.Series.case_when RT03" \
308
218
-i " pandas.Series.cat PR07,SA01" \
309
219
-i " pandas.Series.cat.add_categories PR01,PR02" \
@@ -316,67 +226,40 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
316
226
-i " pandas.Series.cat.rename_categories PR01,PR02" \
317
227
-i " pandas.Series.cat.reorder_categories PR01,PR02" \
318
228
-i " pandas.Series.cat.set_categories PR01,PR02" \
319
- -i " pandas.Series.copy SA01" \
320
229
-i " pandas.Series.div PR07" \
321
- -i " pandas.Series.droplevel SA01" \
322
230
-i " pandas.Series.dt.as_unit PR01,PR02" \
323
- -i " pandas.Series.dt.ceil PR01,PR02,SA01 " \
231
+ -i " pandas.Series.dt.ceil PR01,PR02" \
324
232
-i " pandas.Series.dt.components SA01" \
325
- -i " pandas.Series.dt.date SA01" \
326
- -i " pandas.Series.dt.day SA01" \
327
- -i " pandas.Series.dt.day_name PR01,PR02,SA01" \
328
- -i " pandas.Series.dt.day_of_year SA01" \
329
- -i " pandas.Series.dt.dayofyear SA01" \
233
+ -i " pandas.Series.dt.day_name PR01,PR02" \
330
234
-i " pandas.Series.dt.days SA01" \
331
235
-i " pandas.Series.dt.days_in_month SA01" \
332
236
-i " pandas.Series.dt.daysinmonth SA01" \
333
- -i " pandas.Series.dt.floor PR01,PR02,SA01 " \
237
+ -i " pandas.Series.dt.floor PR01,PR02" \
334
238
-i " pandas.Series.dt.freq GL08" \
335
- -i " pandas.Series.dt.hour SA01" \
336
- -i " pandas.Series.dt.is_leap_year SA01" \
337
- -i " pandas.Series.dt.microsecond SA01" \
338
239
-i " pandas.Series.dt.microseconds SA01" \
339
- -i " pandas.Series.dt.minute SA01" \
340
- -i " pandas.Series.dt.month SA01" \
341
- -i " pandas.Series.dt.month_name PR01,PR02,SA01" \
342
- -i " pandas.Series.dt.nanosecond SA01" \
240
+ -i " pandas.Series.dt.month_name PR01,PR02" \
343
241
-i " pandas.Series.dt.nanoseconds SA01" \
344
242
-i " pandas.Series.dt.normalize PR01" \
345
- -i " pandas.Series.dt.quarter SA01" \
346
243
-i " pandas.Series.dt.qyear GL08" \
347
- -i " pandas.Series.dt.round PR01,PR02,SA01" \
348
- -i " pandas.Series.dt.second SA01" \
244
+ -i " pandas.Series.dt.round PR01,PR02" \
349
245
-i " pandas.Series.dt.seconds SA01" \
350
246
-i " pandas.Series.dt.strftime PR01,PR02" \
351
- -i " pandas.Series.dt.time SA01" \
352
- -i " pandas.Series.dt.timetz SA01" \
353
247
-i " pandas.Series.dt.to_period PR01,PR02,RT03" \
354
248
-i " pandas.Series.dt.total_seconds PR01" \
355
- -i " pandas.Series.dt.tz SA01" \
356
- -i " pandas.Series.dt.tz_convert PR01,PR02,RT03" \
249
+ -i " pandas.Series.dt.tz_convert PR01,PR02" \
357
250
-i " pandas.Series.dt.tz_localize PR01,PR02" \
358
251
-i " pandas.Series.dt.unit GL08" \
359
- -i " pandas.Series.dt.year SA01" \
360
252
-i " pandas.Series.dtype SA01" \
361
- -i " pandas.Series.dtypes SA01" \
362
- -i " pandas.Series.empty GL08" \
363
253
-i " pandas.Series.eq PR07,SA01" \
364
- -i " pandas.Series.ffill SA01" \
365
- -i " pandas.Series.first_valid_index SA01" \
366
254
-i " pandas.Series.floordiv PR07" \
367
255
-i " pandas.Series.ge PR07,SA01" \
368
- -i " pandas.Series.get SA01" \
369
256
-i " pandas.Series.gt PR07,SA01" \
370
257
-i " pandas.Series.hasnans SA01" \
371
- -i " pandas.Series.infer_objects RT03" \
372
258
-i " pandas.Series.is_monotonic_decreasing SA01" \
373
259
-i " pandas.Series.is_monotonic_increasing SA01" \
374
260
-i " pandas.Series.is_unique SA01" \
375
- -i " pandas.Series.item SA01" \
376
- -i " pandas.Series.keys SA01" \
377
261
-i " pandas.Series.kurt RT03,SA01" \
378
262
-i " pandas.Series.kurtosis RT03,SA01" \
379
- -i " pandas.Series.last_valid_index SA01" \
380
263
-i " pandas.Series.le PR07,SA01" \
381
264
-i " pandas.Series.list.__getitem__ SA01" \
382
265
-i " pandas.Series.list.flatten SA01" \
@@ -389,8 +272,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
389
272
-i " pandas.Series.mod PR07" \
390
273
-i " pandas.Series.mode SA01" \
391
274
-i " pandas.Series.mul PR07" \
392
- -i " pandas.Series.nbytes SA01" \
393
- -i " pandas.Series.ndim SA01" \
394
275
-i " pandas.Series.ne PR07,SA01" \
395
276
-i " pandas.Series.nunique RT03" \
396
277
-i " pandas.Series.pad PR01,SA01" \
@@ -410,7 +291,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
410
291
-i " pandas.Series.rtruediv PR07" \
411
292
-i " pandas.Series.sem PR01,RT03,SA01" \
412
293
-i " pandas.Series.shape SA01" \
413
- -i " pandas.Series.size SA01" \
414
294
-i " pandas.Series.skew RT03,SA01" \
415
295
-i " pandas.Series.sparse PR01,SA01" \
416
296
-i " pandas.Series.sparse.density SA01" \
@@ -456,7 +336,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
456
336
-i " pandas.Series.swaplevel SA01" \
457
337
-i " pandas.Series.to_dict SA01" \
458
338
-i " pandas.Series.to_frame SA01" \
459
- -i " pandas.Series.to_list RT03" \
460
339
-i " pandas.Series.to_markdown SA01" \
461
340
-i " pandas.Series.to_string SA01" \
462
341
-i " pandas.Series.truediv PR07" \
@@ -479,14 +358,10 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
479
358
-i " pandas.Timedelta.total_seconds SA01" \
480
359
-i " pandas.Timedelta.view SA01" \
481
360
-i " pandas.TimedeltaIndex.as_unit RT03,SA01" \
482
- -i " pandas.TimedeltaIndex.ceil SA01" \
483
361
-i " pandas.TimedeltaIndex.components SA01" \
484
362
-i " pandas.TimedeltaIndex.days SA01" \
485
- -i " pandas.TimedeltaIndex.floor SA01" \
486
- -i " pandas.TimedeltaIndex.inferred_freq SA01" \
487
363
-i " pandas.TimedeltaIndex.microseconds SA01" \
488
364
-i " pandas.TimedeltaIndex.nanoseconds SA01" \
489
- -i " pandas.TimedeltaIndex.round SA01" \
490
365
-i " pandas.TimedeltaIndex.seconds SA01" \
491
366
-i " pandas.TimedeltaIndex.to_pytimedelta RT03,SA01" \
492
367
-i " pandas.Timestamp PR07,SA01" \
0 commit comments