@@ -391,9 +391,9 @@ def makeNumericIndex(k: int = 10, *, name=None, dtype: Dtype | None) -> Index:
391
391
if is_unsigned_integer_dtype (dtype ):
392
392
values += 2 ** (dtype .itemsize * 8 - 1 )
393
393
elif dtype .kind == "f" :
394
- values = np .random .random_sample ( k ) - np .random .random_sample (1 )
394
+ values = np .random .default_rng ( 2 ). random ( k ) - np .random .default_rng ( 2 ). random (1 )
395
395
values .sort ()
396
- values = values * (10 ** np .random .randint (0 , 9 ))
396
+ values = values * (10 ** np .random .default_rng ( 2 ). integers (0 , 9 ))
397
397
else :
398
398
raise NotImplementedError (f"wrong dtype { dtype } " )
399
399
@@ -487,7 +487,7 @@ def all_timeseries_index_generator(k: int = 10) -> Iterable[Index]:
487
487
# make series
488
488
def make_rand_series (name = None , dtype = np .float64 ) -> Series :
489
489
index = makeStringIndex (_N )
490
- data = np .random .randn (_N )
490
+ data = np .random .default_rng ( 2 ). standard_normal (_N )
491
491
with np .errstate (invalid = "ignore" ):
492
492
data = data .astype (dtype , copy = False )
493
493
return Series (data , index = index , name = name )
@@ -510,21 +510,30 @@ def makeObjectSeries(name=None) -> Series:
510
510
511
511
def getSeriesData () -> dict [str , Series ]:
512
512
index = makeStringIndex (_N )
513
- return {c : Series (np .random .randn (_N ), index = index ) for c in getCols (_K )}
513
+ return {
514
+ c : Series (np .random .default_rng (i ).standard_normal (_N ), index = index )
515
+ for i , c in enumerate (getCols (_K ))
516
+ }
514
517
515
518
516
519
def makeTimeSeries (nper = None , freq : Frequency = "B" , name = None ) -> Series :
517
520
if nper is None :
518
521
nper = _N
519
522
return Series (
520
- np .random .randn (nper ), index = makeDateIndex (nper , freq = freq ), name = name
523
+ np .random .default_rng (2 ).standard_normal (nper ),
524
+ index = makeDateIndex (nper , freq = freq ),
525
+ name = name ,
521
526
)
522
527
523
528
524
529
def makePeriodSeries (nper = None , name = None ) -> Series :
525
530
if nper is None :
526
531
nper = _N
527
- return Series (np .random .randn (nper ), index = makePeriodIndex (nper ), name = name )
532
+ return Series (
533
+ np .random .default_rng (2 ).standard_normal (nper ),
534
+ index = makePeriodIndex (nper ),
535
+ name = name ,
536
+ )
528
537
529
538
530
539
def getTimeSeriesData (nper = None , freq : Frequency = "B" ) -> dict [str , Series ]:
@@ -787,40 +796,6 @@ def makeCustomDataframe(
787
796
return DataFrame (data , index , columns , dtype = dtype )
788
797
789
798
790
- def _create_missing_idx (nrows , ncols , density : float , random_state = None ):
791
- if random_state is None :
792
- random_state = np .random
793
- else :
794
- random_state = np .random .RandomState (random_state )
795
-
796
- # below is cribbed from scipy.sparse
797
- size = round ((1 - density ) * nrows * ncols )
798
- # generate a few more to ensure unique values
799
- min_rows = 5
800
- fac = 1.02
801
- extra_size = min (size + min_rows , fac * size )
802
-
803
- def _gen_unique_rand (rng , _extra_size ):
804
- ind = rng .rand (int (_extra_size ))
805
- return np .unique (np .floor (ind * nrows * ncols ))[:size ]
806
-
807
- ind = _gen_unique_rand (random_state , extra_size )
808
- while ind .size < size :
809
- extra_size *= 1.05
810
- ind = _gen_unique_rand (random_state , extra_size )
811
-
812
- j = np .floor (ind * 1.0 / nrows ).astype (int )
813
- i = (ind - j * nrows ).astype (int )
814
- return i .tolist (), j .tolist ()
815
-
816
-
817
- def makeMissingDataframe (density : float = 0.9 , random_state = None ) -> DataFrame :
818
- df = makeDataFrame ()
819
- i , j = _create_missing_idx (* df .shape , density = density , random_state = random_state )
820
- df .iloc [i , j ] = np .nan
821
- return df
822
-
823
-
824
799
class SubclassedSeries (Series ):
825
800
_metadata = ["testattr" , "name" ]
826
801
@@ -1131,7 +1106,6 @@ def shares_memory(left, right) -> bool:
1131
1106
"makeFloatSeries" ,
1132
1107
"makeIntervalIndex" ,
1133
1108
"makeIntIndex" ,
1134
- "makeMissingDataframe" ,
1135
1109
"makeMixedDataFrame" ,
1136
1110
"makeMultiIndex" ,
1137
1111
"makeNumericIndex" ,
0 commit comments