|
| 1 | +from .pandas_vb_common import * |
| 2 | +import pandas as pd |
| 3 | +import numpy as np |
| 4 | + |
| 5 | + |
| 6 | +class DataframeRolling(object): |
| 7 | + goal_time = 0.2 |
| 8 | + |
| 9 | + def setup(self): |
| 10 | + self.N = 100000 |
| 11 | + self.Ns = 10000 |
| 12 | + self.df = pd.DataFrame({'a': np.random.random(self.N)}) |
| 13 | + self.dfs = pd.DataFrame({'a': np.random.random(self.Ns)}) |
| 14 | + self.wins = 10 |
| 15 | + self.winl = 1000 |
| 16 | + |
| 17 | + def time_rolling_quantile_0(self): |
| 18 | + (self.df.rolling(self.wins).quantile(0.0)) |
| 19 | + |
| 20 | + def time_rolling_quantile_1(self): |
| 21 | + (self.df.rolling(self.wins).quantile(1.0)) |
| 22 | + |
| 23 | + def time_rolling_quantile_median(self): |
| 24 | + (self.df.rolling(self.wins).quantile(0.5)) |
| 25 | + |
| 26 | + def time_rolling_median(self): |
| 27 | + (self.df.rolling(self.wins).median()) |
| 28 | + |
| 29 | + def time_rolling_mean(self): |
| 30 | + (self.df.rolling(self.wins).mean()) |
| 31 | + |
| 32 | + def time_rolling_max(self): |
| 33 | + (self.df.rolling(self.wins).max()) |
| 34 | + |
| 35 | + def time_rolling_min(self): |
| 36 | + (self.df.rolling(self.wins).min()) |
| 37 | + |
| 38 | + def time_rolling_std(self): |
| 39 | + (self.df.rolling(self.wins).std()) |
| 40 | + |
| 41 | + def time_rolling_count(self): |
| 42 | + (self.df.rolling(self.wins).count()) |
| 43 | + |
| 44 | + def time_rolling_skew(self): |
| 45 | + (self.df.rolling(self.wins).skew()) |
| 46 | + |
| 47 | + def time_rolling_kurt(self): |
| 48 | + (self.df.rolling(self.wins).kurt()) |
| 49 | + |
| 50 | + def time_rolling_sum(self): |
| 51 | + (self.df.rolling(self.wins).sum()) |
| 52 | + |
| 53 | + def time_rolling_corr(self): |
| 54 | + (self.dfs.rolling(self.wins).corr()) |
| 55 | + |
| 56 | + def time_rolling_cov(self): |
| 57 | + (self.dfs.rolling(self.wins).cov()) |
| 58 | + |
| 59 | + def time_rolling_quantile_0_l(self): |
| 60 | + (self.df.rolling(self.winl).quantile(0.0)) |
| 61 | + |
| 62 | + def time_rolling_quantile_1_l(self): |
| 63 | + (self.df.rolling(self.winl).quantile(1.0)) |
| 64 | + |
| 65 | + def time_rolling_quantile_median_l(self): |
| 66 | + (self.df.rolling(self.winl).quantile(0.5)) |
| 67 | + |
| 68 | + def time_rolling_median_l(self): |
| 69 | + (self.df.rolling(self.winl).median()) |
| 70 | + |
| 71 | + def time_rolling_mean_l(self): |
| 72 | + (self.df.rolling(self.winl).mean()) |
| 73 | + |
| 74 | + def time_rolling_max_l(self): |
| 75 | + (self.df.rolling(self.winl).max()) |
| 76 | + |
| 77 | + def time_rolling_min_l(self): |
| 78 | + (self.df.rolling(self.winl).min()) |
| 79 | + |
| 80 | + def time_rolling_std_l(self): |
| 81 | + (self.df.rolling(self.wins).std()) |
| 82 | + |
| 83 | + def time_rolling_count_l(self): |
| 84 | + (self.df.rolling(self.wins).count()) |
| 85 | + |
| 86 | + def time_rolling_skew_l(self): |
| 87 | + (self.df.rolling(self.wins).skew()) |
| 88 | + |
| 89 | + def time_rolling_kurt_l(self): |
| 90 | + (self.df.rolling(self.wins).kurt()) |
| 91 | + |
| 92 | + def time_rolling_sum_l(self): |
| 93 | + (self.df.rolling(self.wins).sum()) |
| 94 | + |
| 95 | + |
| 96 | +class SeriesRolling(object): |
| 97 | + goal_time = 0.2 |
| 98 | + |
| 99 | + def setup(self): |
| 100 | + self.N = 100000 |
| 101 | + self.Ns = 10000 |
| 102 | + self.df = pd.DataFrame({'a': np.random.random(self.N)}) |
| 103 | + self.dfs = pd.DataFrame({'a': np.random.random(self.Ns)}) |
| 104 | + self.sr = self.df.a |
| 105 | + self.srs = self.dfs.a |
| 106 | + self.wins = 10 |
| 107 | + self.winl = 1000 |
| 108 | + |
| 109 | + def time_rolling_quantile_0(self): |
| 110 | + (self.sr.rolling(self.wins).quantile(0.0)) |
| 111 | + |
| 112 | + def time_rolling_quantile_1(self): |
| 113 | + (self.sr.rolling(self.wins).quantile(1.0)) |
| 114 | + |
| 115 | + def time_rolling_quantile_median(self): |
| 116 | + (self.sr.rolling(self.wins).quantile(0.5)) |
| 117 | + |
| 118 | + def time_rolling_median(self): |
| 119 | + (self.sr.rolling(self.wins).median()) |
| 120 | + |
| 121 | + def time_rolling_mean(self): |
| 122 | + (self.sr.rolling(self.wins).mean()) |
| 123 | + |
| 124 | + def time_rolling_max(self): |
| 125 | + (self.sr.rolling(self.wins).max()) |
| 126 | + |
| 127 | + def time_rolling_min(self): |
| 128 | + (self.sr.rolling(self.wins).min()) |
| 129 | + |
| 130 | + def time_rolling_std(self): |
| 131 | + (self.sr.rolling(self.wins).std()) |
| 132 | + |
| 133 | + def time_rolling_count(self): |
| 134 | + (self.sr.rolling(self.wins).count()) |
| 135 | + |
| 136 | + def time_rolling_skew(self): |
| 137 | + (self.sr.rolling(self.wins).skew()) |
| 138 | + |
| 139 | + def time_rolling_kurt(self): |
| 140 | + (self.sr.rolling(self.wins).kurt()) |
| 141 | + |
| 142 | + def time_rolling_sum(self): |
| 143 | + (self.sr.rolling(self.wins).sum()) |
| 144 | + |
| 145 | + def time_rolling_corr(self): |
| 146 | + (self.srs.rolling(self.wins).corr()) |
| 147 | + |
| 148 | + def time_rolling_cov(self): |
| 149 | + (self.srs.rolling(self.wins).cov()) |
| 150 | + |
| 151 | + def time_rolling_quantile_0_l(self): |
| 152 | + (self.sr.rolling(self.winl).quantile(0.0)) |
| 153 | + |
| 154 | + def time_rolling_quantile_1_l(self): |
| 155 | + (self.sr.rolling(self.winl).quantile(1.0)) |
| 156 | + |
| 157 | + def time_rolling_quantile_median_l(self): |
| 158 | + (self.sr.rolling(self.winl).quantile(0.5)) |
| 159 | + |
| 160 | + def time_rolling_median_l(self): |
| 161 | + (self.sr.rolling(self.winl).median()) |
| 162 | + |
| 163 | + def time_rolling_mean_l(self): |
| 164 | + (self.sr.rolling(self.winl).mean()) |
| 165 | + |
| 166 | + def time_rolling_max_l(self): |
| 167 | + (self.sr.rolling(self.winl).max()) |
| 168 | + |
| 169 | + def time_rolling_min_l(self): |
| 170 | + (self.sr.rolling(self.winl).min()) |
| 171 | + |
| 172 | + def time_rolling_std_l(self): |
| 173 | + (self.sr.rolling(self.wins).std()) |
| 174 | + |
| 175 | + def time_rolling_count_l(self): |
| 176 | + (self.sr.rolling(self.wins).count()) |
| 177 | + |
| 178 | + def time_rolling_skew_l(self): |
| 179 | + (self.sr.rolling(self.wins).skew()) |
| 180 | + |
| 181 | + def time_rolling_kurt_l(self): |
| 182 | + (self.sr.rolling(self.wins).kurt()) |
| 183 | + |
| 184 | + def time_rolling_sum_l(self): |
| 185 | + (self.sr.rolling(self.wins).sum()) |
0 commit comments