@@ -126,6 +126,49 @@ class DatetimeProperties(Properties):
126
126
"""
127
127
128
128
def to_pydatetime (self ):
129
+ """
130
+ Return the data as an array of native Python datetime objects
131
+
132
+ Timezone information is retained if present.
133
+
134
+ .. warning::
135
+
136
+ Python's datetime uses microsecond resolution, which is lower than
137
+ pandas (nanosecond). The values are truncated.
138
+
139
+ Returns
140
+ -------
141
+ numpy.ndarray
142
+ object dtype array containing native Python datetime objects.
143
+
144
+ See Also
145
+ --------
146
+ datetime.datetime : Standard library value for a datetime.
147
+
148
+ Examples
149
+ --------
150
+ >>> s = pd.Series(pd.date_range('20180310', periods=2))
151
+ >>> s
152
+ 0 2018-03-10
153
+ 1 2018-03-11
154
+ dtype: datetime64[ns]
155
+
156
+ >>> s.dt.to_pydatetime()
157
+ array([datetime.datetime(2018, 3, 10, 0, 0),
158
+ datetime.datetime(2018, 3, 11, 0, 0)], dtype=object)
159
+
160
+ pandas' nanosecond precision is truncated to microseconds.
161
+
162
+ >>> s = pd.Series(pd.date_range('20180310', periods=2, freq='ns'))
163
+ >>> s
164
+ 0 2018-03-10 00:00:00.000000000
165
+ 1 2018-03-10 00:00:00.000000001
166
+ dtype: datetime64[ns]
167
+
168
+ >>> s.dt.to_pydatetime()
169
+ array([datetime.datetime(2018, 3, 10, 0, 0),
170
+ datetime.datetime(2018, 3, 10, 0, 0)], dtype=object)
171
+ """
129
172
return self ._get_values ().to_pydatetime ()
130
173
131
174
@property
0 commit comments