Skip to content

Commit 0aa529e

Browse files
committed
reintroduced changes lost in rebase
1 parent 96f982e commit 0aa529e

File tree

1 file changed

+61
-69
lines changed

1 file changed

+61
-69
lines changed

pandas/core/generic.py

+61-69
Original file line numberDiff line numberDiff line change
@@ -6155,12 +6155,20 @@ def bfill(
61556155
method="bfill", axis=axis, inplace=inplace, limit=limit, downcast=downcast
61566156
)
61576157

6158-
_shared_docs[
6159-
"replace"
6160-
] = """
6158+
@doc(klass=_shared_doc_kwargs["klass"])
6159+
def replace(
6160+
self,
6161+
to_replace=None,
6162+
value=None,
6163+
inplace=False,
6164+
limit=None,
6165+
regex=False,
6166+
method="pad",
6167+
):
6168+
"""
61616169
Replace values given in `to_replace` with `value`.
61626170
6163-
Values of the %(klass)s are replaced with other values dynamically.
6171+
Values of the {klass} are replaced with other values dynamically.
61646172
This differs from updating with ``.loc`` or ``.iloc``, which require
61656173
you to specify a location to update with some value.
61666174
@@ -6192,19 +6200,19 @@ def bfill(
61926200
61936201
- Dicts can be used to specify different replacement values
61946202
for different existing values. For example,
6195-
``{'a': 'b', 'y': 'z'}`` replaces the value 'a' with 'b' and
6203+
``{{'a': 'b', 'y': 'z'}}`` replaces the value 'a' with 'b' and
61966204
'y' with 'z'. To use a dict in this way the `value`
61976205
parameter should be `None`.
61986206
- For a DataFrame a dict can specify that different values
61996207
should be replaced in different columns. For example,
6200-
``{'a': 1, 'b': 'z'}`` looks for the value 1 in column 'a'
6208+
``{{'a': 1, 'b': 'z'}}`` looks for the value 1 in column 'a'
62016209
and the value 'z' in column 'b' and replaces these values
62026210
with whatever is specified in `value`. The `value` parameter
62036211
should not be ``None`` in this case. You can treat this as a
62046212
special case of passing two lists except that you are
62056213
specifying the column to search in.
62066214
- For a DataFrame nested dictionaries, e.g.,
6207-
``{'a': {'b': np.nan}}``, are read as follows: look in column
6215+
``{{'a': {{'b': np.nan}}}}``, are read as follows: look in column
62086216
'a' for the value 'b' and replace it with NaN. The `value`
62096217
parameter should be ``None`` to use a nested dict in this
62106218
way. You can nest regular expressions as well. Note that
@@ -6237,7 +6245,7 @@ def bfill(
62376245
string. Alternatively, this could be a regular expression or a
62386246
list, dict, or array of regular expressions in which case
62396247
`to_replace` must be ``None``.
6240-
method : {'pad', 'ffill', 'bfill', `None`}
6248+
method : {{'pad', 'ffill', 'bfill', `None`}}
62416249
The method to use when for replacement, when `to_replace` is a
62426250
scalar, list or tuple and `value` is ``None``.
62436251
@@ -6246,7 +6254,7 @@ def bfill(
62466254
62476255
Returns
62486256
-------
6249-
%(klass)s
6257+
{klass}
62506258
Object after replacement.
62516259
62526260
Raises
@@ -6272,8 +6280,8 @@ def bfill(
62726280
62736281
See Also
62746282
--------
6275-
%(klass)s.fillna : Fill NA values.
6276-
%(klass)s.where : Replace values based on boolean condition.
6283+
{klass}.fillna : Fill NA values.
6284+
{klass}.where : Replace values based on boolean condition.
62776285
Series.str.replace : Simple string replacement.
62786286
62796287
Notes
@@ -6305,9 +6313,9 @@ def bfill(
63056313
4 4
63066314
dtype: int64
63076315
6308-
>>> df = pd.DataFrame({'A': [0, 1, 2, 3, 4],
6316+
>>> df = pd.DataFrame({{'A': [0, 1, 2, 3, 4],
63096317
... 'B': [5, 6, 7, 8, 9],
6310-
... 'C': ['a', 'b', 'c', 'd', 'e']})
6318+
... 'C': ['a', 'b', 'c', 'd', 'e']}})
63116319
>>> df.replace(0, 5)
63126320
A B C
63136321
0 5 5 a
@@ -6344,23 +6352,23 @@ def bfill(
63446352
63456353
**dict-like `to_replace`**
63466354
6347-
>>> df.replace({0: 10, 1: 100})
6355+
>>> df.replace({{0: 10, 1: 100}})
63486356
A B C
63496357
0 10 5 a
63506358
1 100 6 b
63516359
2 2 7 c
63526360
3 3 8 d
63536361
4 4 9 e
63546362
6355-
>>> df.replace({'A': 0, 'B': 5}, 100)
6363+
>>> df.replace({{'A': 0, 'B': 5}}, 100)
63566364
A B C
63576365
0 100 100 a
63586366
1 1 6 b
63596367
2 2 7 c
63606368
3 3 8 d
63616369
4 4 9 e
63626370
6363-
>>> df.replace({'A': {0: 100, 4: 400}})
6371+
>>> df.replace({{'A': {{0: 100, 4: 400}}}})
63646372
A B C
63656373
0 100 5 a
63666374
1 1 6 b
@@ -6370,15 +6378,15 @@ def bfill(
63706378
63716379
**Regular expression `to_replace`**
63726380
6373-
>>> df = pd.DataFrame({'A': ['bat', 'foo', 'bait'],
6374-
... 'B': ['abc', 'bar', 'xyz']})
6381+
>>> df = pd.DataFrame({{'A': ['bat', 'foo', 'bait'],
6382+
... 'B': ['abc', 'bar', 'xyz']}})
63756383
>>> df.replace(to_replace=r'^ba.$', value='new', regex=True)
63766384
A B
63776385
0 new abc
63786386
1 foo new
63796387
2 bait xyz
63806388
6381-
>>> df.replace({'A': r'^ba.$'}, {'A': 'new'}, regex=True)
6389+
>>> df.replace({{'A': r'^ba.$'}}, {{'A': 'new'}}, regex=True)
63826390
A B
63836391
0 new abc
63846392
1 foo bar
@@ -6390,7 +6398,7 @@ def bfill(
63906398
1 foo new
63916399
2 bait xyz
63926400
6393-
>>> df.replace(regex={r'^ba.$': 'new', 'foo': 'xyz'})
6401+
>>> df.replace(regex={{r'^ba.$': 'new', 'foo': 'xyz'}})
63946402
A B
63956403
0 new abc
63966404
1 xyz new
@@ -6406,9 +6414,9 @@ def bfill(
64066414
the data types in the `to_replace` parameter must match the data
64076415
type of the value being replaced:
64086416
6409-
>>> df = pd.DataFrame({'A': [True, False, True],
6410-
... 'B': [False, True, False]})
6411-
>>> df.replace({'a string': 'new value', True: False}) # raises
6417+
>>> df = pd.DataFrame({{'A': [True, False, True],
6418+
... 'B': [False, True, False]}})
6419+
>>> df.replace({{'a string': 'new value', True: False}}) # raises
64126420
Traceback (most recent call last):
64136421
...
64146422
TypeError: Cannot compare types 'ndarray(dtype=bool)' and 'str'
@@ -6427,7 +6435,7 @@ def bfill(
64276435
``s.replace({'a': None})`` is equivalent to
64286436
``s.replace(to_replace={'a': None}, value=None, method=None)``:
64296437
6430-
>>> s.replace({'a': None})
6438+
>>> s.replace({{'a': None}})
64316439
0 10
64326440
1 None
64336441
2 None
@@ -6450,17 +6458,6 @@ def bfill(
64506458
4 b
64516459
dtype: object
64526460
"""
6453-
6454-
@Appender(_shared_docs["replace"] % _shared_doc_kwargs)
6455-
def replace(
6456-
self,
6457-
to_replace=None,
6458-
value=None,
6459-
inplace=False,
6460-
limit=None,
6461-
regex=False,
6462-
method="pad",
6463-
):
64646461
if not (
64656462
is_scalar(to_replace)
64666463
or isinstance(to_replace, pd.Series)
@@ -8246,17 +8243,29 @@ def ranker(data):
82468243

82478244
return ranker(data)
82488245

8249-
_shared_docs[
8250-
"align"
8251-
] = """
8246+
@doc(**_shared_doc_kwargs)
8247+
def align(
8248+
self,
8249+
other,
8250+
join="outer",
8251+
axis=None,
8252+
level=None,
8253+
copy=True,
8254+
fill_value=None,
8255+
method=None,
8256+
limit=None,
8257+
fill_axis=0,
8258+
broadcast_axis=None,
8259+
):
8260+
"""
82528261
Align two objects on their axes with the specified join method.
82538262
82548263
Join method is specified for each axis Index.
82558264
82568265
Parameters
82578266
----------
82588267
other : DataFrame or Series
8259-
join : {'outer', 'inner', 'left', 'right'}, default 'outer'
8268+
join : {{'outer', 'inner', 'left', 'right'}}, default 'outer'
82608269
axis : allowed axis of the other object, default None
82618270
Align on index (0), columns (1), or both (None).
82628271
level : int or level name, default None
@@ -8268,7 +8277,7 @@ def ranker(data):
82688277
fill_value : scalar, default np.NaN
82698278
Value to use for missing values. Defaults to NaN, but can be any
82708279
"compatible" value.
8271-
method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
8280+
method : {{'backfill', 'bfill', 'pad', 'ffill', None}}, default None
82728281
Method to use for filling holes in reindexed Series:
82738282
82748283
- pad / ffill: propagate last valid observation forward to next valid.
@@ -8281,32 +8290,18 @@ def ranker(data):
82818290
be partially filled. If method is not specified, this is the
82828291
maximum number of entries along the entire axis where NaNs will be
82838292
filled. Must be greater than 0 if not None.
8284-
fill_axis : %(axes_single_arg)s, default 0
8293+
fill_axis : {axes_single_arg}, default 0
82858294
Filling axis, method and limit.
8286-
broadcast_axis : %(axes_single_arg)s, default None
8295+
broadcast_axis : {axes_single_arg}, default None
82878296
Broadcast values along this axis, if aligning two objects of
82888297
different dimensions.
82898298
82908299
Returns
82918300
-------
8292-
(left, right) : (%(klass)s, type of other)
8301+
(left, right) : ({klass}, type of other)
82938302
Aligned objects.
82948303
"""
82958304

8296-
@Appender(_shared_docs["align"] % _shared_doc_kwargs)
8297-
def align(
8298-
self,
8299-
other,
8300-
join="outer",
8301-
axis=None,
8302-
level=None,
8303-
copy=True,
8304-
fill_value=None,
8305-
method=None,
8306-
limit=None,
8307-
fill_axis=0,
8308-
broadcast_axis=None,
8309-
):
83108305
method = missing.clean_fill_method(method)
83118306

83128307
if broadcast_axis == 1 and self.ndim != other.ndim:
@@ -8844,9 +8839,11 @@ def mask(
88448839
errors=errors,
88458840
)
88468841

8847-
_shared_docs[
8848-
"shift"
8849-
] = """
8842+
@doc(klass=_shared_doc_kwargs["klass"])
8843+
def shift(
8844+
self: FrameOrSeries, periods=1, freq=None, axis=0, fill_value=None
8845+
) -> FrameOrSeries:
8846+
"""
88508847
Shift index by desired number of periods with an optional time `freq`.
88518848
88528849
When `freq` is not passed, shift the index without realigning the data.
@@ -8863,7 +8860,7 @@ def mask(
88638860
If `freq` is specified then the index values are shifted but the
88648861
data is not realigned. That is, use `freq` if you would like to
88658862
extend the index when shifting and preserve the original data.
8866-
axis : {0 or 'index', 1 or 'columns', None}, default None
8863+
axis : {{0 or 'index', 1 or 'columns', None}}, default None
88678864
Shift direction.
88688865
fill_value : object, optional
88698866
The scalar value to use for newly introduced missing values.
@@ -8876,7 +8873,7 @@ def mask(
88768873
88778874
Returns
88788875
-------
8879-
%(klass)s
8876+
{klass}
88808877
Copy of input object, shifted.
88818878
88828879
See Also
@@ -8889,9 +8886,9 @@ def mask(
88898886
88908887
Examples
88918888
--------
8892-
>>> df = pd.DataFrame({'Col1': [10, 20, 15, 30, 45],
8889+
>>> df = pd.DataFrame({{'Col1': [10, 20, 15, 30, 45],
88938890
... 'Col2': [13, 23, 18, 33, 48],
8894-
... 'Col3': [17, 27, 22, 37, 52]})
8891+
... 'Col3': [17, 27, 22, 37, 52]}})
88958892
88968893
>>> df.shift(periods=3)
88978894
Col1 Col2 Col3
@@ -8917,11 +8914,6 @@ def mask(
89178914
3 10 13 17
89188915
4 20 23 27
89198916
"""
8920-
8921-
@Appender(_shared_docs["shift"] % _shared_doc_kwargs)
8922-
def shift(
8923-
self: FrameOrSeries, periods=1, freq=None, axis=0, fill_value=None
8924-
) -> FrameOrSeries:
89258917
if periods == 0:
89268918
return self.copy()
89278919

0 commit comments

Comments
 (0)