@@ -279,6 +279,13 @@ def is_datetime64_dtype(arr_or_dtype) -> bool:
279
279
boolean
280
280
Whether or not the array-like or dtype is of the datetime64 dtype.
281
281
282
+ See Also
283
+ --------
284
+ api.types.is_datetime64_ns_dtype: Check whether the provided array or
285
+ dtype is of the datetime64[ns] dtype.
286
+ api.types.is_datetime64_any_dtype: Check whether the provided array or
287
+ dtype is of the datetime64 dtype.
288
+
282
289
Examples
283
290
--------
284
291
>>> from pandas.api.types import is_datetime64_dtype
@@ -316,6 +323,13 @@ def is_datetime64tz_dtype(arr_or_dtype) -> bool:
316
323
boolean
317
324
Whether or not the array-like or dtype is of a DatetimeTZDtype dtype.
318
325
326
+ See Also
327
+ --------
328
+ api.types.is_datetime64_dtype: Check whether an array-like or
329
+ dtype is of the datetime64 dtype.
330
+ api.types.is_datetime64_any_dtype: Check whether the provided array or
331
+ dtype is of the datetime64 dtype.
332
+
319
333
Examples
320
334
--------
321
335
>>> from pandas.api.types import is_datetime64tz_dtype
@@ -514,6 +528,12 @@ def is_categorical_dtype(arr_or_dtype) -> bool:
514
528
boolean
515
529
Whether or not the array-like or dtype is of the Categorical dtype.
516
530
531
+ See Also
532
+ --------
533
+ api.types.is_list_like: Check if the object is list-like.
534
+ api.types.is_complex_dtype: Check whether the provided array or
535
+ dtype is of a complex dtype.
536
+
517
537
Examples
518
538
--------
519
539
>>> from pandas.api.types import is_categorical_dtype
@@ -977,6 +997,13 @@ def is_datetime64_ns_dtype(arr_or_dtype) -> bool:
977
997
bool
978
998
Whether or not the array or dtype is of the datetime64[ns] dtype.
979
999
1000
+ See Also
1001
+ --------
1002
+ api.types.is_datetime64_dtype: Check whether an array-like or
1003
+ dtype is of the datetime64 dtype.
1004
+ api.types.is_datetime64_any_dtype: Check whether the provided array or
1005
+ dtype is of the datetime64 dtype.
1006
+
980
1007
Examples
981
1008
--------
982
1009
>>> from pandas.api.types import is_datetime64_ns_dtype
@@ -1436,6 +1463,14 @@ def is_complex_dtype(arr_or_dtype) -> bool:
1436
1463
boolean
1437
1464
Whether or not the array or dtype is of a complex dtype.
1438
1465
1466
+ See Also
1467
+ --------
1468
+ api.types.is_complex: Return True if given object is complex.
1469
+ api.types.is_numeric_dtype: Check whether the provided array or
1470
+ dtype is of a numeric dtype.
1471
+ api.types.is_integer_dtype: Check whether the provided array or
1472
+ dtype is of an integer dtype.
1473
+
1439
1474
Examples
1440
1475
--------
1441
1476
>>> from pandas.api.types import is_complex_dtype
0 commit comments