@@ -5041,8 +5041,7 @@ def pipe(self, func, *args, **kwargs):
5041
5041
`agg` is an alias for `aggregate`. Use the alias.
5042
5042
5043
5043
A passed user-defined-function will be passed a Series for evaluation.
5044
- {examples}
5045
- """
5044
+ {examples}"""
5046
5045
)
5047
5046
5048
5047
# ----------------------------------------------------------------------
@@ -10998,8 +10997,7 @@ def stat_func(
10998
10997
10999
10998
Returns
11000
10999
-------
11001
- {name1} or {name2} (if level specified)\n
11002
- """
11000
+ {name1} or {name2} (if level specified)\n """
11003
11001
nv .validate_stat_ddof_func (tuple (), kwargs , fname = name )
11004
11002
if skipna is None :
11005
11003
skipna = True
@@ -11068,8 +11066,7 @@ def cum_func(self, axis=None, skipna=True, *args, **kwargs):
11068
11066
{name2}.cumsum : Return cumulative sum over {name2} axis.
11069
11067
{name2}.cumprod : Return cumulative product over {name2} axis.
11070
11068
11071
- {examples}
11072
- """
11069
+ {examples}"""
11073
11070
skipna = nv .validate_cum_func_with_skipna (skipna , args , kwargs , name )
11074
11071
if axis is None :
11075
11072
axis = self ._stat_axis_number
@@ -11118,11 +11115,11 @@ def _make_logical_function(
11118
11115
)
11119
11116
def logical_func (self , axis = 0 , bool_only = None , skipna = True , level = None , ** kwargs ):
11120
11117
"""
11121
- {desc}
11118
+ {desc}
11122
11119
11123
- Parameters
11124
- ----------
11125
- axis : {{0 or 'index', 1 or 'columns', None}}, default 0
11120
+ Parameters
11121
+ ----------
11122
+ axis : {{0 or 'index', 1 or 'columns', None}}, default 0
11126
11123
Indicate which axis or axes should be reduced.
11127
11124
11128
11125
* 0 / 'index' : reduce the index, return a Series whose index is the
@@ -11131,30 +11128,29 @@ def logical_func(self, axis=0, bool_only=None, skipna=True, level=None, **kwargs
11131
11128
original index.
11132
11129
* None : reduce all axes, return a scalar.
11133
11130
11134
- bool_only : bool, default None
11131
+ bool_only : bool, default None
11135
11132
Include only boolean columns. If None, will attempt to use everything,
11136
11133
then use only boolean data. Not implemented for Series.
11137
- skipna : bool, default True
11134
+ skipna : bool, default True
11138
11135
Exclude NA/null values. If the entire row/column is NA and skipna is
11139
11136
True, then the result will be {empty_value}, as for an empty row/column.
11140
11137
If skipna is False, then NA are treated as True, because these are not
11141
11138
equal to zero.
11142
- level : int or level name, default None
11139
+ level : int or level name, default None
11143
11140
If the axis is a MultiIndex (hierarchical), count along a
11144
11141
particular level, collapsing into a {name1}.
11145
- **kwargs : any, default None
11142
+ **kwargs : any, default None
11146
11143
Additional keywords have no effect but might be accepted for
11147
11144
compatibility with NumPy.
11148
11145
11149
- Returns
11150
- -------
11151
- {name1} or {name2}
11146
+ Returns
11147
+ -------
11148
+ {name1} or {name2}
11152
11149
If level is specified, then, {name2} is returned; otherwise, {name1}
11153
11150
is returned.
11154
11151
11155
- {see_also}
11156
- {examples}
11157
- """
11152
+ {see_also}
11153
+ {examples}"""
11158
11154
nv .validate_logical_func (tuple (), kwargs , fname = name )
11159
11155
if level is not None :
11160
11156
if bool_only is not None :
0 commit comments