Skip to content

Commit 04feeea

Browse files
committed
Added Timestamps to tests
1 parent 5abf6d8 commit 04feeea

File tree

1 file changed

+10
-4
lines changed

1 file changed

+10
-4
lines changed

pandas/tests/groupby/test_groupby.py

+10-4
Original file line numberDiff line numberDiff line change
@@ -1896,7 +1896,10 @@ def test_rank_apply(self):
18961896
assert_series_equal(result, expected)
18971897

18981898
@pytest.mark.parametrize("vals", [
1899-
[2, 2, 8, 2, 6], ['bar', 'bar', 'foo', 'bar', 'baz']])
1899+
[2, 2, 8, 2, 6], ['bar', 'bar', 'foo', 'bar', 'baz'],
1900+
[pd.Timestamp('2018-01-02'), pd.Timestamp('2018-01-02'),
1901+
pd.Timestamp('2018-01-08'), pd.Timestamp('2018-01-02'),
1902+
pd.Timestamp('2018-01-06')]])
19001903
@pytest.mark.parametrize("ties_method,ascending,pct,exp", [
19011904
('average', True, False, DataFrame(
19021905
[2., 2., 5., 2., 4.], columns=['val'])),
@@ -1949,8 +1952,10 @@ def test_rank_args(self, vals, ties_method, ascending, pct, exp):
19491952

19501953
@pytest.mark.parametrize("vals", [
19511954
[2, 2, np.nan, 8, 2, 6, np.nan, np.nan], # floats
1952-
['bar', 'bar', np.nan, 'foo', 'bar', 'baz', np.nan, np.nan] # objects
1953-
])
1955+
['bar', 'bar', np.nan, 'foo', 'bar', 'baz', np.nan, np.nan], # objects
1956+
[pd.Timestamp('2018-01-02'), pd.Timestamp('2018-01-02'), np.nan,
1957+
pd.Timestamp('2018-01-08'), pd.Timestamp('2018-01-02'),
1958+
pd.Timestamp('2018-01-06'), np.nan, np.nan]])
19541959
@pytest.mark.parametrize("ties_method,ascending,na_option,pct,exp", [
19551960
('average', True, 'keep', False, DataFrame(
19561961
[2., 2., np.nan, 5., 2., 4., np.nan, np.nan], columns=['val'])),
@@ -2005,7 +2010,8 @@ def test_rank_args(self, vals, ties_method, ascending, pct, exp):
20052010
('average', False, 'no_na', False, DataFrame(
20062011
[4., 4., 7.0, 1., 4., 2., 7.0, 7.0], columns=['val'])),
20072012
('average', False, 'no_na', True, DataFrame(
2008-
[0.5, 0.5, 0.875, 0.125, 0.5, 0.25, 0.875, 0.875], columns=['val'])),
2013+
[0.5, 0.5, 0.875, 0.125, 0.5, 0.25, 0.875, 0.875],
2014+
columns=['val'])),
20092015
('min', True, 'no_na', False, DataFrame(
20102016
[1., 1., 6., 5., 1., 4., 6., 6.], columns=['val'])),
20112017
('min', True, 'no_na', True, DataFrame(

0 commit comments

Comments
 (0)