@@ -1896,7 +1896,10 @@ def test_rank_apply(self):
1896
1896
assert_series_equal (result , expected )
1897
1897
1898
1898
@pytest .mark .parametrize ("vals" , [
1899
- [2 , 2 , 8 , 2 , 6 ], ['bar' , 'bar' , 'foo' , 'bar' , 'baz' ]])
1899
+ [2 , 2 , 8 , 2 , 6 ], ['bar' , 'bar' , 'foo' , 'bar' , 'baz' ],
1900
+ [pd .Timestamp ('2018-01-02' ), pd .Timestamp ('2018-01-02' ),
1901
+ pd .Timestamp ('2018-01-08' ), pd .Timestamp ('2018-01-02' ),
1902
+ pd .Timestamp ('2018-01-06' )]])
1900
1903
@pytest .mark .parametrize ("ties_method,ascending,pct,exp" , [
1901
1904
('average' , True , False , DataFrame (
1902
1905
[2. , 2. , 5. , 2. , 4. ], columns = ['val' ])),
@@ -1949,8 +1952,10 @@ def test_rank_args(self, vals, ties_method, ascending, pct, exp):
1949
1952
1950
1953
@pytest .mark .parametrize ("vals" , [
1951
1954
[2 , 2 , np .nan , 8 , 2 , 6 , np .nan , np .nan ], # floats
1952
- ['bar' , 'bar' , np .nan , 'foo' , 'bar' , 'baz' , np .nan , np .nan ] # objects
1953
- ])
1955
+ ['bar' , 'bar' , np .nan , 'foo' , 'bar' , 'baz' , np .nan , np .nan ], # objects
1956
+ [pd .Timestamp ('2018-01-02' ), pd .Timestamp ('2018-01-02' ), np .nan ,
1957
+ pd .Timestamp ('2018-01-08' ), pd .Timestamp ('2018-01-02' ),
1958
+ pd .Timestamp ('2018-01-06' ), np .nan , np .nan ]])
1954
1959
@pytest .mark .parametrize ("ties_method,ascending,na_option,pct,exp" , [
1955
1960
('average' , True , 'keep' , False , DataFrame (
1956
1961
[2. , 2. , np .nan , 5. , 2. , 4. , np .nan , np .nan ], columns = ['val' ])),
@@ -2005,7 +2010,8 @@ def test_rank_args(self, vals, ties_method, ascending, pct, exp):
2005
2010
('average' , False , 'no_na' , False , DataFrame (
2006
2011
[4. , 4. , 7.0 , 1. , 4. , 2. , 7.0 , 7.0 ], columns = ['val' ])),
2007
2012
('average' , False , 'no_na' , True , DataFrame (
2008
- [0.5 , 0.5 , 0.875 , 0.125 , 0.5 , 0.25 , 0.875 , 0.875 ], columns = ['val' ])),
2013
+ [0.5 , 0.5 , 0.875 , 0.125 , 0.5 , 0.25 , 0.875 , 0.875 ],
2014
+ columns = ['val' ])),
2009
2015
('min' , True , 'no_na' , False , DataFrame (
2010
2016
[1. , 1. , 6. , 5. , 1. , 4. , 6. , 6. ], columns = ['val' ])),
2011
2017
('min' , True , 'no_na' , True , DataFrame (
0 commit comments