@@ -1793,19 +1793,19 @@ def ewma(float64_t[:] vals, float64_t com, int adjust, bint ignore_na, int minp)
1793
1793
new_wt = 1. if adjust else alpha
1794
1794
1795
1795
weighted_avg = vals[0 ]
1796
- is_observation = ( weighted_avg == weighted_avg)
1796
+ is_observation = weighted_avg == weighted_avg
1797
1797
nobs = int (is_observation)
1798
- output[0 ] = weighted_avg if ( nobs >= minp) else NaN
1798
+ output[0 ] = weighted_avg if nobs >= minp else NaN
1799
1799
old_wt = 1.
1800
1800
1801
1801
with nogil:
1802
1802
for i in range (1 , N):
1803
1803
cur = vals[i]
1804
- is_observation = ( cur == cur)
1804
+ is_observation = cur == cur
1805
1805
nobs += is_observation
1806
1806
if weighted_avg == weighted_avg:
1807
1807
1808
- if is_observation or ( not ignore_na) :
1808
+ if is_observation or not ignore_na:
1809
1809
1810
1810
old_wt *= old_wt_factor
1811
1811
if is_observation:
@@ -1821,7 +1821,7 @@ def ewma(float64_t[:] vals, float64_t com, int adjust, bint ignore_na, int minp)
1821
1821
elif is_observation:
1822
1822
weighted_avg = cur
1823
1823
1824
- output[i] = weighted_avg if ( nobs >= minp) else NaN
1824
+ output[i] = weighted_avg if nobs >= minp else NaN
1825
1825
1826
1826
return output
1827
1827
@@ -1851,16 +1851,16 @@ def ewmcov(float64_t[:] input_x, float64_t[:] input_y,
1851
1851
"""
1852
1852
1853
1853
cdef:
1854
- Py_ssize_t N = len (input_x)
1854
+ Py_ssize_t N = len (input_x), M = len (input_y)
1855
1855
float64_t alpha, old_wt_factor, new_wt, mean_x, mean_y, cov
1856
1856
float64_t sum_wt, sum_wt2, old_wt, cur_x, cur_y, old_mean_x, old_mean_y
1857
1857
float64_t numerator, denominator
1858
1858
Py_ssize_t i, nobs
1859
1859
ndarray[float64_t] output
1860
1860
bint is_observation
1861
1861
1862
- if < Py_ssize_t > len (input_y) != N:
1863
- raise ValueError (f" arrays are of different lengths ({N} and {len(input_y) })" )
1862
+ if M != N:
1863
+ raise ValueError (f" arrays are of different lengths ({N} and {M })" )
1864
1864
1865
1865
output = np.empty(N, dtype = float )
1866
1866
if N == 0 :
@@ -1874,12 +1874,12 @@ def ewmcov(float64_t[:] input_x, float64_t[:] input_y,
1874
1874
1875
1875
mean_x = input_x[0 ]
1876
1876
mean_y = input_y[0 ]
1877
- is_observation = (( mean_x == mean_x) and (mean_y == mean_y) )
1877
+ is_observation = (mean_x == mean_x) and (mean_y == mean_y)
1878
1878
nobs = int (is_observation)
1879
1879
if not is_observation:
1880
1880
mean_x = NaN
1881
1881
mean_y = NaN
1882
- output[0 ] = (0. if bias else NaN) if ( nobs >= minp) else NaN
1882
+ output[0 ] = (0. if bias else NaN) if nobs >= minp else NaN
1883
1883
cov = 0.
1884
1884
sum_wt = 1.
1885
1885
sum_wt2 = 1.
@@ -1890,10 +1890,10 @@ def ewmcov(float64_t[:] input_x, float64_t[:] input_y,
1890
1890
for i in range (1 , N):
1891
1891
cur_x = input_x[i]
1892
1892
cur_y = input_y[i]
1893
- is_observation = (( cur_x == cur_x) and (cur_y == cur_y) )
1893
+ is_observation = (cur_x == cur_x) and (cur_y == cur_y)
1894
1894
nobs += is_observation
1895
1895
if mean_x == mean_x:
1896
- if is_observation or ( not ignore_na) :
1896
+ if is_observation or not ignore_na:
1897
1897
sum_wt *= old_wt_factor
1898
1898
sum_wt2 *= (old_wt_factor * old_wt_factor)
1899
1899
old_wt *= old_wt_factor
@@ -1929,8 +1929,8 @@ def ewmcov(float64_t[:] input_x, float64_t[:] input_y,
1929
1929
if not bias:
1930
1930
numerator = sum_wt * sum_wt
1931
1931
denominator = numerator - sum_wt2
1932
- if ( denominator > 0. ) :
1933
- output[i] = (( numerator / denominator) * cov)
1932
+ if denominator > 0 :
1933
+ output[i] = (numerator / denominator) * cov
1934
1934
else :
1935
1935
output[i] = NaN
1936
1936
else :
0 commit comments